LMPO
MAYBE
We consider the following Problem:
Strict Trs:
{ lessElements(l, t) -> lessE(l, t, 0())
, lessE(l, t, n) ->
if(le(length(l), n), le(length(toList(t)), n), l, t, n)
, if(true(), b, l, t, n) -> l
, if(false(), true(), l, t, n) -> t
, if(false(), false(), l, t, n) -> lessE(l, t, s(n))
, length(nil()) -> 0()
, length(cons(n, l)) -> s(length(l))
, toList(leaf()) -> nil()
, toList(node(t1, n, t2)) ->
append(toList(t1), cons(n, toList(t2)))
, append(nil(), l2) -> l2
, append(cons(n, l1), l2) -> cons(n, append(l1, l2))
, le(s(n), 0()) -> false()
, le(0(), m) -> true()
, le(s(n), s(m)) -> le(n, m)
, a() -> c()
, a() -> d()}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
MPO
MAYBE
We consider the following Problem:
Strict Trs:
{ lessElements(l, t) -> lessE(l, t, 0())
, lessE(l, t, n) ->
if(le(length(l), n), le(length(toList(t)), n), l, t, n)
, if(true(), b, l, t, n) -> l
, if(false(), true(), l, t, n) -> t
, if(false(), false(), l, t, n) -> lessE(l, t, s(n))
, length(nil()) -> 0()
, length(cons(n, l)) -> s(length(l))
, toList(leaf()) -> nil()
, toList(node(t1, n, t2)) ->
append(toList(t1), cons(n, toList(t2)))
, append(nil(), l2) -> l2
, append(cons(n, l1), l2) -> cons(n, append(l1, l2))
, le(s(n), 0()) -> false()
, le(0(), m) -> true()
, le(s(n), s(m)) -> le(n, m)
, a() -> c()
, a() -> d()}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
POP*
MAYBE
We consider the following Problem:
Strict Trs:
{ lessElements(l, t) -> lessE(l, t, 0())
, lessE(l, t, n) ->
if(le(length(l), n), le(length(toList(t)), n), l, t, n)
, if(true(), b, l, t, n) -> l
, if(false(), true(), l, t, n) -> t
, if(false(), false(), l, t, n) -> lessE(l, t, s(n))
, length(nil()) -> 0()
, length(cons(n, l)) -> s(length(l))
, toList(leaf()) -> nil()
, toList(node(t1, n, t2)) ->
append(toList(t1), cons(n, toList(t2)))
, append(nil(), l2) -> l2
, append(cons(n, l1), l2) -> cons(n, append(l1, l2))
, le(s(n), 0()) -> false()
, le(0(), m) -> true()
, le(s(n), s(m)) -> le(n, m)
, a() -> c()
, a() -> d()}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
POP* (PS)
MAYBE
We consider the following Problem:
Strict Trs:
{ lessElements(l, t) -> lessE(l, t, 0())
, lessE(l, t, n) ->
if(le(length(l), n), le(length(toList(t)), n), l, t, n)
, if(true(), b, l, t, n) -> l
, if(false(), true(), l, t, n) -> t
, if(false(), false(), l, t, n) -> lessE(l, t, s(n))
, length(nil()) -> 0()
, length(cons(n, l)) -> s(length(l))
, toList(leaf()) -> nil()
, toList(node(t1, n, t2)) ->
append(toList(t1), cons(n, toList(t2)))
, append(nil(), l2) -> l2
, append(cons(n, l1), l2) -> cons(n, append(l1, l2))
, le(s(n), 0()) -> false()
, le(0(), m) -> true()
, le(s(n), s(m)) -> le(n, m)
, a() -> c()
, a() -> d()}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
Small POP*
MAYBE
We consider the following Problem:
Strict Trs:
{ lessElements(l, t) -> lessE(l, t, 0())
, lessE(l, t, n) ->
if(le(length(l), n), le(length(toList(t)), n), l, t, n)
, if(true(), b, l, t, n) -> l
, if(false(), true(), l, t, n) -> t
, if(false(), false(), l, t, n) -> lessE(l, t, s(n))
, length(nil()) -> 0()
, length(cons(n, l)) -> s(length(l))
, toList(leaf()) -> nil()
, toList(node(t1, n, t2)) ->
append(toList(t1), cons(n, toList(t2)))
, append(nil(), l2) -> l2
, append(cons(n, l1), l2) -> cons(n, append(l1, l2))
, le(s(n), 0()) -> false()
, le(0(), m) -> true()
, le(s(n), s(m)) -> le(n, m)
, a() -> c()
, a() -> d()}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
Small POP* (PS)
MAYBE
We consider the following Problem:
Strict Trs:
{ lessElements(l, t) -> lessE(l, t, 0())
, lessE(l, t, n) ->
if(le(length(l), n), le(length(toList(t)), n), l, t, n)
, if(true(), b, l, t, n) -> l
, if(false(), true(), l, t, n) -> t
, if(false(), false(), l, t, n) -> lessE(l, t, s(n))
, length(nil()) -> 0()
, length(cons(n, l)) -> s(length(l))
, toList(leaf()) -> nil()
, toList(node(t1, n, t2)) ->
append(toList(t1), cons(n, toList(t2)))
, append(nil(), l2) -> l2
, append(cons(n, l1), l2) -> cons(n, append(l1, l2))
, le(s(n), 0()) -> false()
, le(0(), m) -> true()
, le(s(n), s(m)) -> le(n, m)
, a() -> c()
, a() -> d()}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..