LMPO
MAYBE
We consider the following Problem:
Strict Trs:
{ primes() -> sieve(from(s(s(0()))))
, from(X) -> cons(X, from(s(X)))
, head(cons(X, Y)) -> X
, tail(cons(X, Y)) -> Y
, if(true(), X, Y) -> X
, if(false(), X, Y) -> Y
, filter(s(s(X)), cons(Y, Z)) ->
if(divides(s(s(X)), Y),
filter(s(s(X)), Z),
cons(Y, filter(X, sieve(Y))))
, sieve(cons(X, Y)) -> cons(X, filter(X, sieve(Y)))}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
MPO
MAYBE
We consider the following Problem:
Strict Trs:
{ primes() -> sieve(from(s(s(0()))))
, from(X) -> cons(X, from(s(X)))
, head(cons(X, Y)) -> X
, tail(cons(X, Y)) -> Y
, if(true(), X, Y) -> X
, if(false(), X, Y) -> Y
, filter(s(s(X)), cons(Y, Z)) ->
if(divides(s(s(X)), Y),
filter(s(s(X)), Z),
cons(Y, filter(X, sieve(Y))))
, sieve(cons(X, Y)) -> cons(X, filter(X, sieve(Y)))}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
POP*
MAYBE
We consider the following Problem:
Strict Trs:
{ primes() -> sieve(from(s(s(0()))))
, from(X) -> cons(X, from(s(X)))
, head(cons(X, Y)) -> X
, tail(cons(X, Y)) -> Y
, if(true(), X, Y) -> X
, if(false(), X, Y) -> Y
, filter(s(s(X)), cons(Y, Z)) ->
if(divides(s(s(X)), Y),
filter(s(s(X)), Z),
cons(Y, filter(X, sieve(Y))))
, sieve(cons(X, Y)) -> cons(X, filter(X, sieve(Y)))}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
POP* (PS)
MAYBE
We consider the following Problem:
Strict Trs:
{ primes() -> sieve(from(s(s(0()))))
, from(X) -> cons(X, from(s(X)))
, head(cons(X, Y)) -> X
, tail(cons(X, Y)) -> Y
, if(true(), X, Y) -> X
, if(false(), X, Y) -> Y
, filter(s(s(X)), cons(Y, Z)) ->
if(divides(s(s(X)), Y),
filter(s(s(X)), Z),
cons(Y, filter(X, sieve(Y))))
, sieve(cons(X, Y)) -> cons(X, filter(X, sieve(Y)))}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
Small POP*
MAYBE
We consider the following Problem:
Strict Trs:
{ primes() -> sieve(from(s(s(0()))))
, from(X) -> cons(X, from(s(X)))
, head(cons(X, Y)) -> X
, tail(cons(X, Y)) -> Y
, if(true(), X, Y) -> X
, if(false(), X, Y) -> Y
, filter(s(s(X)), cons(Y, Z)) ->
if(divides(s(s(X)), Y),
filter(s(s(X)), Z),
cons(Y, filter(X, sieve(Y))))
, sieve(cons(X, Y)) -> cons(X, filter(X, sieve(Y)))}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
Small POP* (PS)
MAYBE
We consider the following Problem:
Strict Trs:
{ primes() -> sieve(from(s(s(0()))))
, from(X) -> cons(X, from(s(X)))
, head(cons(X, Y)) -> X
, tail(cons(X, Y)) -> Y
, if(true(), X, Y) -> X
, if(false(), X, Y) -> Y
, filter(s(s(X)), cons(Y, Z)) ->
if(divides(s(s(X)), Y),
filter(s(s(X)), Z),
cons(Y, filter(X, sieve(Y))))
, sieve(cons(X, Y)) -> cons(X, filter(X, sieve(Y)))}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..