LMPO
MAYBE
We consider the following Problem:
Strict Trs:
{ ite(tt(), x, y) -> x
, ite(ff(), x, y) -> y
, lt(0(), s(y)) -> tt()
, lt(x, 0()) -> ff()
, lt(s(x), s(y)) -> lt(x, y)
, insert(a, nil()) -> cons(a, nil())
, insert(a, cons(b, l)) ->
ite(lt(a, b), cons(a, cons(b, l)), cons(b, insert(a, l)))
, sort(nil()) -> nil()
, sort(cons(a, l)) -> insert(a, sort(l))}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
MPO
YES(?,PRIMREC)
We consider the following Problem:
Strict Trs:
{ ite(tt(), x, y) -> x
, ite(ff(), x, y) -> y
, lt(0(), s(y)) -> tt()
, lt(x, 0()) -> ff()
, lt(s(x), s(y)) -> lt(x, y)
, insert(a, nil()) -> cons(a, nil())
, insert(a, cons(b, l)) ->
ite(lt(a, b), cons(a, cons(b, l)), cons(b, insert(a, l)))
, sort(nil()) -> nil()
, sort(cons(a, l)) -> insert(a, sort(l))}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,PRIMREC)
Proof:
The input was oriented with the instance of
'multiset path orders' as induced by the precedence
insert > ite, insert > lt, insert > cons, sort > insert, tt ~ s,
ff ~ 0 .
Hurray, we answered YES(?,PRIMREC)
POP*
MAYBE
We consider the following Problem:
Strict Trs:
{ ite(tt(), x, y) -> x
, ite(ff(), x, y) -> y
, lt(0(), s(y)) -> tt()
, lt(x, 0()) -> ff()
, lt(s(x), s(y)) -> lt(x, y)
, insert(a, nil()) -> cons(a, nil())
, insert(a, cons(b, l)) ->
ite(lt(a, b), cons(a, cons(b, l)), cons(b, insert(a, l)))
, sort(nil()) -> nil()
, sort(cons(a, l)) -> insert(a, sort(l))}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
POP* (PS)
MAYBE
We consider the following Problem:
Strict Trs:
{ ite(tt(), x, y) -> x
, ite(ff(), x, y) -> y
, lt(0(), s(y)) -> tt()
, lt(x, 0()) -> ff()
, lt(s(x), s(y)) -> lt(x, y)
, insert(a, nil()) -> cons(a, nil())
, insert(a, cons(b, l)) ->
ite(lt(a, b), cons(a, cons(b, l)), cons(b, insert(a, l)))
, sort(nil()) -> nil()
, sort(cons(a, l)) -> insert(a, sort(l))}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
Small POP*
MAYBE
We consider the following Problem:
Strict Trs:
{ ite(tt(), x, y) -> x
, ite(ff(), x, y) -> y
, lt(0(), s(y)) -> tt()
, lt(x, 0()) -> ff()
, lt(s(x), s(y)) -> lt(x, y)
, insert(a, nil()) -> cons(a, nil())
, insert(a, cons(b, l)) ->
ite(lt(a, b), cons(a, cons(b, l)), cons(b, insert(a, l)))
, sort(nil()) -> nil()
, sort(cons(a, l)) -> insert(a, sort(l))}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
Small POP* (PS)
MAYBE
We consider the following Problem:
Strict Trs:
{ ite(tt(), x, y) -> x
, ite(ff(), x, y) -> y
, lt(0(), s(y)) -> tt()
, lt(x, 0()) -> ff()
, lt(s(x), s(y)) -> lt(x, y)
, insert(a, nil()) -> cons(a, nil())
, insert(a, cons(b, l)) ->
ite(lt(a, b), cons(a, cons(b, l)), cons(b, insert(a, l)))
, sort(nil()) -> nil()
, sort(cons(a, l)) -> insert(a, sort(l))}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..