LMPO
MAYBE
We consider the following Problem:
Strict Trs:
{ a__p(0()) -> 0()
, a__p(s(X)) -> mark(X)
, a__leq(0(), Y) -> true()
, a__leq(s(X), 0()) -> false()
, a__leq(s(X), s(Y)) -> a__leq(mark(X), mark(Y))
, a__if(true(), X, Y) -> mark(X)
, a__if(false(), X, Y) -> mark(Y)
, a__diff(X, Y) ->
a__if(a__leq(mark(X), mark(Y)), 0(), s(diff(p(X), Y)))
, mark(p(X)) -> a__p(mark(X))
, mark(leq(X1, X2)) -> a__leq(mark(X1), mark(X2))
, mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3)
, mark(diff(X1, X2)) -> a__diff(mark(X1), mark(X2))
, mark(0()) -> 0()
, mark(s(X)) -> s(mark(X))
, mark(true()) -> true()
, mark(false()) -> false()
, a__p(X) -> p(X)
, a__leq(X1, X2) -> leq(X1, X2)
, a__if(X1, X2, X3) -> if(X1, X2, X3)
, a__diff(X1, X2) -> diff(X1, X2)}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
MPO
MAYBE
We consider the following Problem:
Strict Trs:
{ a__p(0()) -> 0()
, a__p(s(X)) -> mark(X)
, a__leq(0(), Y) -> true()
, a__leq(s(X), 0()) -> false()
, a__leq(s(X), s(Y)) -> a__leq(mark(X), mark(Y))
, a__if(true(), X, Y) -> mark(X)
, a__if(false(), X, Y) -> mark(Y)
, a__diff(X, Y) ->
a__if(a__leq(mark(X), mark(Y)), 0(), s(diff(p(X), Y)))
, mark(p(X)) -> a__p(mark(X))
, mark(leq(X1, X2)) -> a__leq(mark(X1), mark(X2))
, mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3)
, mark(diff(X1, X2)) -> a__diff(mark(X1), mark(X2))
, mark(0()) -> 0()
, mark(s(X)) -> s(mark(X))
, mark(true()) -> true()
, mark(false()) -> false()
, a__p(X) -> p(X)
, a__leq(X1, X2) -> leq(X1, X2)
, a__if(X1, X2, X3) -> if(X1, X2, X3)
, a__diff(X1, X2) -> diff(X1, X2)}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
POP*
MAYBE
We consider the following Problem:
Strict Trs:
{ a__p(0()) -> 0()
, a__p(s(X)) -> mark(X)
, a__leq(0(), Y) -> true()
, a__leq(s(X), 0()) -> false()
, a__leq(s(X), s(Y)) -> a__leq(mark(X), mark(Y))
, a__if(true(), X, Y) -> mark(X)
, a__if(false(), X, Y) -> mark(Y)
, a__diff(X, Y) ->
a__if(a__leq(mark(X), mark(Y)), 0(), s(diff(p(X), Y)))
, mark(p(X)) -> a__p(mark(X))
, mark(leq(X1, X2)) -> a__leq(mark(X1), mark(X2))
, mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3)
, mark(diff(X1, X2)) -> a__diff(mark(X1), mark(X2))
, mark(0()) -> 0()
, mark(s(X)) -> s(mark(X))
, mark(true()) -> true()
, mark(false()) -> false()
, a__p(X) -> p(X)
, a__leq(X1, X2) -> leq(X1, X2)
, a__if(X1, X2, X3) -> if(X1, X2, X3)
, a__diff(X1, X2) -> diff(X1, X2)}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
POP* (PS)
MAYBE
We consider the following Problem:
Strict Trs:
{ a__p(0()) -> 0()
, a__p(s(X)) -> mark(X)
, a__leq(0(), Y) -> true()
, a__leq(s(X), 0()) -> false()
, a__leq(s(X), s(Y)) -> a__leq(mark(X), mark(Y))
, a__if(true(), X, Y) -> mark(X)
, a__if(false(), X, Y) -> mark(Y)
, a__diff(X, Y) ->
a__if(a__leq(mark(X), mark(Y)), 0(), s(diff(p(X), Y)))
, mark(p(X)) -> a__p(mark(X))
, mark(leq(X1, X2)) -> a__leq(mark(X1), mark(X2))
, mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3)
, mark(diff(X1, X2)) -> a__diff(mark(X1), mark(X2))
, mark(0()) -> 0()
, mark(s(X)) -> s(mark(X))
, mark(true()) -> true()
, mark(false()) -> false()
, a__p(X) -> p(X)
, a__leq(X1, X2) -> leq(X1, X2)
, a__if(X1, X2, X3) -> if(X1, X2, X3)
, a__diff(X1, X2) -> diff(X1, X2)}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
Small POP*
MAYBE
We consider the following Problem:
Strict Trs:
{ a__p(0()) -> 0()
, a__p(s(X)) -> mark(X)
, a__leq(0(), Y) -> true()
, a__leq(s(X), 0()) -> false()
, a__leq(s(X), s(Y)) -> a__leq(mark(X), mark(Y))
, a__if(true(), X, Y) -> mark(X)
, a__if(false(), X, Y) -> mark(Y)
, a__diff(X, Y) ->
a__if(a__leq(mark(X), mark(Y)), 0(), s(diff(p(X), Y)))
, mark(p(X)) -> a__p(mark(X))
, mark(leq(X1, X2)) -> a__leq(mark(X1), mark(X2))
, mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3)
, mark(diff(X1, X2)) -> a__diff(mark(X1), mark(X2))
, mark(0()) -> 0()
, mark(s(X)) -> s(mark(X))
, mark(true()) -> true()
, mark(false()) -> false()
, a__p(X) -> p(X)
, a__leq(X1, X2) -> leq(X1, X2)
, a__if(X1, X2, X3) -> if(X1, X2, X3)
, a__diff(X1, X2) -> diff(X1, X2)}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
Small POP* (PS)
MAYBE
We consider the following Problem:
Strict Trs:
{ a__p(0()) -> 0()
, a__p(s(X)) -> mark(X)
, a__leq(0(), Y) -> true()
, a__leq(s(X), 0()) -> false()
, a__leq(s(X), s(Y)) -> a__leq(mark(X), mark(Y))
, a__if(true(), X, Y) -> mark(X)
, a__if(false(), X, Y) -> mark(Y)
, a__diff(X, Y) ->
a__if(a__leq(mark(X), mark(Y)), 0(), s(diff(p(X), Y)))
, mark(p(X)) -> a__p(mark(X))
, mark(leq(X1, X2)) -> a__leq(mark(X1), mark(X2))
, mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3)
, mark(diff(X1, X2)) -> a__diff(mark(X1), mark(X2))
, mark(0()) -> 0()
, mark(s(X)) -> s(mark(X))
, mark(true()) -> true()
, mark(false()) -> false()
, a__p(X) -> p(X)
, a__leq(X1, X2) -> leq(X1, X2)
, a__if(X1, X2, X3) -> if(X1, X2, X3)
, a__diff(X1, X2) -> diff(X1, X2)}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..