LMPO
MAYBE
We consider the following Problem:
Strict Trs:
{ a__dbl(0()) -> 0()
, a__dbl(s(X)) -> s(s(dbl(X)))
, a__dbls(nil()) -> nil()
, a__dbls(cons(X, Y)) -> cons(dbl(X), dbls(Y))
, a__sel(0(), cons(X, Y)) -> mark(X)
, a__sel(s(X), cons(Y, Z)) -> a__sel(mark(X), mark(Z))
, a__indx(nil(), X) -> nil()
, a__indx(cons(X, Y), Z) -> cons(sel(X, Z), indx(Y, Z))
, a__from(X) -> cons(X, from(s(X)))
, mark(dbl(X)) -> a__dbl(mark(X))
, mark(dbls(X)) -> a__dbls(mark(X))
, mark(sel(X1, X2)) -> a__sel(mark(X1), mark(X2))
, mark(indx(X1, X2)) -> a__indx(mark(X1), X2)
, mark(from(X)) -> a__from(X)
, mark(0()) -> 0()
, mark(s(X)) -> s(X)
, mark(nil()) -> nil()
, mark(cons(X1, X2)) -> cons(X1, X2)
, a__dbl(X) -> dbl(X)
, a__dbls(X) -> dbls(X)
, a__sel(X1, X2) -> sel(X1, X2)
, a__indx(X1, X2) -> indx(X1, X2)
, a__from(X) -> from(X)}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
MPO
MAYBE
We consider the following Problem:
Strict Trs:
{ a__dbl(0()) -> 0()
, a__dbl(s(X)) -> s(s(dbl(X)))
, a__dbls(nil()) -> nil()
, a__dbls(cons(X, Y)) -> cons(dbl(X), dbls(Y))
, a__sel(0(), cons(X, Y)) -> mark(X)
, a__sel(s(X), cons(Y, Z)) -> a__sel(mark(X), mark(Z))
, a__indx(nil(), X) -> nil()
, a__indx(cons(X, Y), Z) -> cons(sel(X, Z), indx(Y, Z))
, a__from(X) -> cons(X, from(s(X)))
, mark(dbl(X)) -> a__dbl(mark(X))
, mark(dbls(X)) -> a__dbls(mark(X))
, mark(sel(X1, X2)) -> a__sel(mark(X1), mark(X2))
, mark(indx(X1, X2)) -> a__indx(mark(X1), X2)
, mark(from(X)) -> a__from(X)
, mark(0()) -> 0()
, mark(s(X)) -> s(X)
, mark(nil()) -> nil()
, mark(cons(X1, X2)) -> cons(X1, X2)
, a__dbl(X) -> dbl(X)
, a__dbls(X) -> dbls(X)
, a__sel(X1, X2) -> sel(X1, X2)
, a__indx(X1, X2) -> indx(X1, X2)
, a__from(X) -> from(X)}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
POP*
MAYBE
We consider the following Problem:
Strict Trs:
{ a__dbl(0()) -> 0()
, a__dbl(s(X)) -> s(s(dbl(X)))
, a__dbls(nil()) -> nil()
, a__dbls(cons(X, Y)) -> cons(dbl(X), dbls(Y))
, a__sel(0(), cons(X, Y)) -> mark(X)
, a__sel(s(X), cons(Y, Z)) -> a__sel(mark(X), mark(Z))
, a__indx(nil(), X) -> nil()
, a__indx(cons(X, Y), Z) -> cons(sel(X, Z), indx(Y, Z))
, a__from(X) -> cons(X, from(s(X)))
, mark(dbl(X)) -> a__dbl(mark(X))
, mark(dbls(X)) -> a__dbls(mark(X))
, mark(sel(X1, X2)) -> a__sel(mark(X1), mark(X2))
, mark(indx(X1, X2)) -> a__indx(mark(X1), X2)
, mark(from(X)) -> a__from(X)
, mark(0()) -> 0()
, mark(s(X)) -> s(X)
, mark(nil()) -> nil()
, mark(cons(X1, X2)) -> cons(X1, X2)
, a__dbl(X) -> dbl(X)
, a__dbls(X) -> dbls(X)
, a__sel(X1, X2) -> sel(X1, X2)
, a__indx(X1, X2) -> indx(X1, X2)
, a__from(X) -> from(X)}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
POP* (PS)
MAYBE
We consider the following Problem:
Strict Trs:
{ a__dbl(0()) -> 0()
, a__dbl(s(X)) -> s(s(dbl(X)))
, a__dbls(nil()) -> nil()
, a__dbls(cons(X, Y)) -> cons(dbl(X), dbls(Y))
, a__sel(0(), cons(X, Y)) -> mark(X)
, a__sel(s(X), cons(Y, Z)) -> a__sel(mark(X), mark(Z))
, a__indx(nil(), X) -> nil()
, a__indx(cons(X, Y), Z) -> cons(sel(X, Z), indx(Y, Z))
, a__from(X) -> cons(X, from(s(X)))
, mark(dbl(X)) -> a__dbl(mark(X))
, mark(dbls(X)) -> a__dbls(mark(X))
, mark(sel(X1, X2)) -> a__sel(mark(X1), mark(X2))
, mark(indx(X1, X2)) -> a__indx(mark(X1), X2)
, mark(from(X)) -> a__from(X)
, mark(0()) -> 0()
, mark(s(X)) -> s(X)
, mark(nil()) -> nil()
, mark(cons(X1, X2)) -> cons(X1, X2)
, a__dbl(X) -> dbl(X)
, a__dbls(X) -> dbls(X)
, a__sel(X1, X2) -> sel(X1, X2)
, a__indx(X1, X2) -> indx(X1, X2)
, a__from(X) -> from(X)}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
Small POP*
MAYBE
We consider the following Problem:
Strict Trs:
{ a__dbl(0()) -> 0()
, a__dbl(s(X)) -> s(s(dbl(X)))
, a__dbls(nil()) -> nil()
, a__dbls(cons(X, Y)) -> cons(dbl(X), dbls(Y))
, a__sel(0(), cons(X, Y)) -> mark(X)
, a__sel(s(X), cons(Y, Z)) -> a__sel(mark(X), mark(Z))
, a__indx(nil(), X) -> nil()
, a__indx(cons(X, Y), Z) -> cons(sel(X, Z), indx(Y, Z))
, a__from(X) -> cons(X, from(s(X)))
, mark(dbl(X)) -> a__dbl(mark(X))
, mark(dbls(X)) -> a__dbls(mark(X))
, mark(sel(X1, X2)) -> a__sel(mark(X1), mark(X2))
, mark(indx(X1, X2)) -> a__indx(mark(X1), X2)
, mark(from(X)) -> a__from(X)
, mark(0()) -> 0()
, mark(s(X)) -> s(X)
, mark(nil()) -> nil()
, mark(cons(X1, X2)) -> cons(X1, X2)
, a__dbl(X) -> dbl(X)
, a__dbls(X) -> dbls(X)
, a__sel(X1, X2) -> sel(X1, X2)
, a__indx(X1, X2) -> indx(X1, X2)
, a__from(X) -> from(X)}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
Small POP* (PS)
MAYBE
We consider the following Problem:
Strict Trs:
{ a__dbl(0()) -> 0()
, a__dbl(s(X)) -> s(s(dbl(X)))
, a__dbls(nil()) -> nil()
, a__dbls(cons(X, Y)) -> cons(dbl(X), dbls(Y))
, a__sel(0(), cons(X, Y)) -> mark(X)
, a__sel(s(X), cons(Y, Z)) -> a__sel(mark(X), mark(Z))
, a__indx(nil(), X) -> nil()
, a__indx(cons(X, Y), Z) -> cons(sel(X, Z), indx(Y, Z))
, a__from(X) -> cons(X, from(s(X)))
, mark(dbl(X)) -> a__dbl(mark(X))
, mark(dbls(X)) -> a__dbls(mark(X))
, mark(sel(X1, X2)) -> a__sel(mark(X1), mark(X2))
, mark(indx(X1, X2)) -> a__indx(mark(X1), X2)
, mark(from(X)) -> a__from(X)
, mark(0()) -> 0()
, mark(s(X)) -> s(X)
, mark(nil()) -> nil()
, mark(cons(X1, X2)) -> cons(X1, X2)
, a__dbl(X) -> dbl(X)
, a__dbls(X) -> dbls(X)
, a__sel(X1, X2) -> sel(X1, X2)
, a__indx(X1, X2) -> indx(X1, X2)
, a__from(X) -> from(X)}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..