LMPO
MAYBE
We consider the following Problem:
Strict Trs:
{ a__filter(cons(X, Y), 0(), M) -> cons(0(), filter(Y, M, M))
, a__filter(cons(X, Y), s(N), M) -> cons(mark(X), filter(Y, N, M))
, a__sieve(cons(0(), Y)) -> cons(0(), sieve(Y))
, a__sieve(cons(s(N), Y)) ->
cons(s(mark(N)), sieve(filter(Y, N, N)))
, a__nats(N) -> cons(mark(N), nats(s(N)))
, a__zprimes() -> a__sieve(a__nats(s(s(0()))))
, mark(filter(X1, X2, X3)) ->
a__filter(mark(X1), mark(X2), mark(X3))
, mark(sieve(X)) -> a__sieve(mark(X))
, mark(nats(X)) -> a__nats(mark(X))
, mark(zprimes()) -> a__zprimes()
, mark(cons(X1, X2)) -> cons(mark(X1), X2)
, mark(0()) -> 0()
, mark(s(X)) -> s(mark(X))
, a__filter(X1, X2, X3) -> filter(X1, X2, X3)
, a__sieve(X) -> sieve(X)
, a__nats(X) -> nats(X)
, a__zprimes() -> zprimes()}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
MPO
MAYBE
We consider the following Problem:
Strict Trs:
{ a__filter(cons(X, Y), 0(), M) -> cons(0(), filter(Y, M, M))
, a__filter(cons(X, Y), s(N), M) -> cons(mark(X), filter(Y, N, M))
, a__sieve(cons(0(), Y)) -> cons(0(), sieve(Y))
, a__sieve(cons(s(N), Y)) ->
cons(s(mark(N)), sieve(filter(Y, N, N)))
, a__nats(N) -> cons(mark(N), nats(s(N)))
, a__zprimes() -> a__sieve(a__nats(s(s(0()))))
, mark(filter(X1, X2, X3)) ->
a__filter(mark(X1), mark(X2), mark(X3))
, mark(sieve(X)) -> a__sieve(mark(X))
, mark(nats(X)) -> a__nats(mark(X))
, mark(zprimes()) -> a__zprimes()
, mark(cons(X1, X2)) -> cons(mark(X1), X2)
, mark(0()) -> 0()
, mark(s(X)) -> s(mark(X))
, a__filter(X1, X2, X3) -> filter(X1, X2, X3)
, a__sieve(X) -> sieve(X)
, a__nats(X) -> nats(X)
, a__zprimes() -> zprimes()}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
POP*
MAYBE
We consider the following Problem:
Strict Trs:
{ a__filter(cons(X, Y), 0(), M) -> cons(0(), filter(Y, M, M))
, a__filter(cons(X, Y), s(N), M) -> cons(mark(X), filter(Y, N, M))
, a__sieve(cons(0(), Y)) -> cons(0(), sieve(Y))
, a__sieve(cons(s(N), Y)) ->
cons(s(mark(N)), sieve(filter(Y, N, N)))
, a__nats(N) -> cons(mark(N), nats(s(N)))
, a__zprimes() -> a__sieve(a__nats(s(s(0()))))
, mark(filter(X1, X2, X3)) ->
a__filter(mark(X1), mark(X2), mark(X3))
, mark(sieve(X)) -> a__sieve(mark(X))
, mark(nats(X)) -> a__nats(mark(X))
, mark(zprimes()) -> a__zprimes()
, mark(cons(X1, X2)) -> cons(mark(X1), X2)
, mark(0()) -> 0()
, mark(s(X)) -> s(mark(X))
, a__filter(X1, X2, X3) -> filter(X1, X2, X3)
, a__sieve(X) -> sieve(X)
, a__nats(X) -> nats(X)
, a__zprimes() -> zprimes()}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
POP* (PS)
MAYBE
We consider the following Problem:
Strict Trs:
{ a__filter(cons(X, Y), 0(), M) -> cons(0(), filter(Y, M, M))
, a__filter(cons(X, Y), s(N), M) -> cons(mark(X), filter(Y, N, M))
, a__sieve(cons(0(), Y)) -> cons(0(), sieve(Y))
, a__sieve(cons(s(N), Y)) ->
cons(s(mark(N)), sieve(filter(Y, N, N)))
, a__nats(N) -> cons(mark(N), nats(s(N)))
, a__zprimes() -> a__sieve(a__nats(s(s(0()))))
, mark(filter(X1, X2, X3)) ->
a__filter(mark(X1), mark(X2), mark(X3))
, mark(sieve(X)) -> a__sieve(mark(X))
, mark(nats(X)) -> a__nats(mark(X))
, mark(zprimes()) -> a__zprimes()
, mark(cons(X1, X2)) -> cons(mark(X1), X2)
, mark(0()) -> 0()
, mark(s(X)) -> s(mark(X))
, a__filter(X1, X2, X3) -> filter(X1, X2, X3)
, a__sieve(X) -> sieve(X)
, a__nats(X) -> nats(X)
, a__zprimes() -> zprimes()}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
Small POP*
MAYBE
We consider the following Problem:
Strict Trs:
{ a__filter(cons(X, Y), 0(), M) -> cons(0(), filter(Y, M, M))
, a__filter(cons(X, Y), s(N), M) -> cons(mark(X), filter(Y, N, M))
, a__sieve(cons(0(), Y)) -> cons(0(), sieve(Y))
, a__sieve(cons(s(N), Y)) ->
cons(s(mark(N)), sieve(filter(Y, N, N)))
, a__nats(N) -> cons(mark(N), nats(s(N)))
, a__zprimes() -> a__sieve(a__nats(s(s(0()))))
, mark(filter(X1, X2, X3)) ->
a__filter(mark(X1), mark(X2), mark(X3))
, mark(sieve(X)) -> a__sieve(mark(X))
, mark(nats(X)) -> a__nats(mark(X))
, mark(zprimes()) -> a__zprimes()
, mark(cons(X1, X2)) -> cons(mark(X1), X2)
, mark(0()) -> 0()
, mark(s(X)) -> s(mark(X))
, a__filter(X1, X2, X3) -> filter(X1, X2, X3)
, a__sieve(X) -> sieve(X)
, a__nats(X) -> nats(X)
, a__zprimes() -> zprimes()}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
Small POP* (PS)
MAYBE
We consider the following Problem:
Strict Trs:
{ a__filter(cons(X, Y), 0(), M) -> cons(0(), filter(Y, M, M))
, a__filter(cons(X, Y), s(N), M) -> cons(mark(X), filter(Y, N, M))
, a__sieve(cons(0(), Y)) -> cons(0(), sieve(Y))
, a__sieve(cons(s(N), Y)) ->
cons(s(mark(N)), sieve(filter(Y, N, N)))
, a__nats(N) -> cons(mark(N), nats(s(N)))
, a__zprimes() -> a__sieve(a__nats(s(s(0()))))
, mark(filter(X1, X2, X3)) ->
a__filter(mark(X1), mark(X2), mark(X3))
, mark(sieve(X)) -> a__sieve(mark(X))
, mark(nats(X)) -> a__nats(mark(X))
, mark(zprimes()) -> a__zprimes()
, mark(cons(X1, X2)) -> cons(mark(X1), X2)
, mark(0()) -> 0()
, mark(s(X)) -> s(mark(X))
, a__filter(X1, X2, X3) -> filter(X1, X2, X3)
, a__sieve(X) -> sieve(X)
, a__nats(X) -> nats(X)
, a__zprimes() -> zprimes()}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..