LMPO
MAYBE
We consider the following Problem:
Strict Trs:
{ a__U11(tt(), N) -> mark(N)
, a__U21(tt(), M, N) -> s(a__plus(mark(N), mark(M)))
, a__and(tt(), X) -> mark(X)
, a__isNat(0()) -> tt()
, a__isNat(plus(V1, V2)) -> a__and(a__isNat(V1), isNat(V2))
, a__isNat(s(V1)) -> a__isNat(V1)
, a__plus(N, 0()) -> a__U11(a__isNat(N), N)
, a__plus(N, s(M)) -> a__U21(a__and(a__isNat(M), isNat(N)), M, N)
, mark(U11(X1, X2)) -> a__U11(mark(X1), X2)
, mark(U21(X1, X2, X3)) -> a__U21(mark(X1), X2, X3)
, mark(plus(X1, X2)) -> a__plus(mark(X1), mark(X2))
, mark(and(X1, X2)) -> a__and(mark(X1), X2)
, mark(isNat(X)) -> a__isNat(X)
, mark(tt()) -> tt()
, mark(s(X)) -> s(mark(X))
, mark(0()) -> 0()
, a__U11(X1, X2) -> U11(X1, X2)
, a__U21(X1, X2, X3) -> U21(X1, X2, X3)
, a__plus(X1, X2) -> plus(X1, X2)
, a__and(X1, X2) -> and(X1, X2)
, a__isNat(X) -> isNat(X)}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
MPO
MAYBE
We consider the following Problem:
Strict Trs:
{ a__U11(tt(), N) -> mark(N)
, a__U21(tt(), M, N) -> s(a__plus(mark(N), mark(M)))
, a__and(tt(), X) -> mark(X)
, a__isNat(0()) -> tt()
, a__isNat(plus(V1, V2)) -> a__and(a__isNat(V1), isNat(V2))
, a__isNat(s(V1)) -> a__isNat(V1)
, a__plus(N, 0()) -> a__U11(a__isNat(N), N)
, a__plus(N, s(M)) -> a__U21(a__and(a__isNat(M), isNat(N)), M, N)
, mark(U11(X1, X2)) -> a__U11(mark(X1), X2)
, mark(U21(X1, X2, X3)) -> a__U21(mark(X1), X2, X3)
, mark(plus(X1, X2)) -> a__plus(mark(X1), mark(X2))
, mark(and(X1, X2)) -> a__and(mark(X1), X2)
, mark(isNat(X)) -> a__isNat(X)
, mark(tt()) -> tt()
, mark(s(X)) -> s(mark(X))
, mark(0()) -> 0()
, a__U11(X1, X2) -> U11(X1, X2)
, a__U21(X1, X2, X3) -> U21(X1, X2, X3)
, a__plus(X1, X2) -> plus(X1, X2)
, a__and(X1, X2) -> and(X1, X2)
, a__isNat(X) -> isNat(X)}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
POP*
MAYBE
We consider the following Problem:
Strict Trs:
{ a__U11(tt(), N) -> mark(N)
, a__U21(tt(), M, N) -> s(a__plus(mark(N), mark(M)))
, a__and(tt(), X) -> mark(X)
, a__isNat(0()) -> tt()
, a__isNat(plus(V1, V2)) -> a__and(a__isNat(V1), isNat(V2))
, a__isNat(s(V1)) -> a__isNat(V1)
, a__plus(N, 0()) -> a__U11(a__isNat(N), N)
, a__plus(N, s(M)) -> a__U21(a__and(a__isNat(M), isNat(N)), M, N)
, mark(U11(X1, X2)) -> a__U11(mark(X1), X2)
, mark(U21(X1, X2, X3)) -> a__U21(mark(X1), X2, X3)
, mark(plus(X1, X2)) -> a__plus(mark(X1), mark(X2))
, mark(and(X1, X2)) -> a__and(mark(X1), X2)
, mark(isNat(X)) -> a__isNat(X)
, mark(tt()) -> tt()
, mark(s(X)) -> s(mark(X))
, mark(0()) -> 0()
, a__U11(X1, X2) -> U11(X1, X2)
, a__U21(X1, X2, X3) -> U21(X1, X2, X3)
, a__plus(X1, X2) -> plus(X1, X2)
, a__and(X1, X2) -> and(X1, X2)
, a__isNat(X) -> isNat(X)}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
POP* (PS)
MAYBE
We consider the following Problem:
Strict Trs:
{ a__U11(tt(), N) -> mark(N)
, a__U21(tt(), M, N) -> s(a__plus(mark(N), mark(M)))
, a__and(tt(), X) -> mark(X)
, a__isNat(0()) -> tt()
, a__isNat(plus(V1, V2)) -> a__and(a__isNat(V1), isNat(V2))
, a__isNat(s(V1)) -> a__isNat(V1)
, a__plus(N, 0()) -> a__U11(a__isNat(N), N)
, a__plus(N, s(M)) -> a__U21(a__and(a__isNat(M), isNat(N)), M, N)
, mark(U11(X1, X2)) -> a__U11(mark(X1), X2)
, mark(U21(X1, X2, X3)) -> a__U21(mark(X1), X2, X3)
, mark(plus(X1, X2)) -> a__plus(mark(X1), mark(X2))
, mark(and(X1, X2)) -> a__and(mark(X1), X2)
, mark(isNat(X)) -> a__isNat(X)
, mark(tt()) -> tt()
, mark(s(X)) -> s(mark(X))
, mark(0()) -> 0()
, a__U11(X1, X2) -> U11(X1, X2)
, a__U21(X1, X2, X3) -> U21(X1, X2, X3)
, a__plus(X1, X2) -> plus(X1, X2)
, a__and(X1, X2) -> and(X1, X2)
, a__isNat(X) -> isNat(X)}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
Small POP*
MAYBE
We consider the following Problem:
Strict Trs:
{ a__U11(tt(), N) -> mark(N)
, a__U21(tt(), M, N) -> s(a__plus(mark(N), mark(M)))
, a__and(tt(), X) -> mark(X)
, a__isNat(0()) -> tt()
, a__isNat(plus(V1, V2)) -> a__and(a__isNat(V1), isNat(V2))
, a__isNat(s(V1)) -> a__isNat(V1)
, a__plus(N, 0()) -> a__U11(a__isNat(N), N)
, a__plus(N, s(M)) -> a__U21(a__and(a__isNat(M), isNat(N)), M, N)
, mark(U11(X1, X2)) -> a__U11(mark(X1), X2)
, mark(U21(X1, X2, X3)) -> a__U21(mark(X1), X2, X3)
, mark(plus(X1, X2)) -> a__plus(mark(X1), mark(X2))
, mark(and(X1, X2)) -> a__and(mark(X1), X2)
, mark(isNat(X)) -> a__isNat(X)
, mark(tt()) -> tt()
, mark(s(X)) -> s(mark(X))
, mark(0()) -> 0()
, a__U11(X1, X2) -> U11(X1, X2)
, a__U21(X1, X2, X3) -> U21(X1, X2, X3)
, a__plus(X1, X2) -> plus(X1, X2)
, a__and(X1, X2) -> and(X1, X2)
, a__isNat(X) -> isNat(X)}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
Small POP* (PS)
MAYBE
We consider the following Problem:
Strict Trs:
{ a__U11(tt(), N) -> mark(N)
, a__U21(tt(), M, N) -> s(a__plus(mark(N), mark(M)))
, a__and(tt(), X) -> mark(X)
, a__isNat(0()) -> tt()
, a__isNat(plus(V1, V2)) -> a__and(a__isNat(V1), isNat(V2))
, a__isNat(s(V1)) -> a__isNat(V1)
, a__plus(N, 0()) -> a__U11(a__isNat(N), N)
, a__plus(N, s(M)) -> a__U21(a__and(a__isNat(M), isNat(N)), M, N)
, mark(U11(X1, X2)) -> a__U11(mark(X1), X2)
, mark(U21(X1, X2, X3)) -> a__U21(mark(X1), X2, X3)
, mark(plus(X1, X2)) -> a__plus(mark(X1), mark(X2))
, mark(and(X1, X2)) -> a__and(mark(X1), X2)
, mark(isNat(X)) -> a__isNat(X)
, mark(tt()) -> tt()
, mark(s(X)) -> s(mark(X))
, mark(0()) -> 0()
, a__U11(X1, X2) -> U11(X1, X2)
, a__U21(X1, X2, X3) -> U21(X1, X2, X3)
, a__plus(X1, X2) -> plus(X1, X2)
, a__and(X1, X2) -> and(X1, X2)
, a__isNat(X) -> isNat(X)}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..