YES(?,O(n^2)) We are left with following problem, upon which TcT provides the certificate YES(?,O(n^2)). Strict Trs: { not(true()) -> false() , not(false()) -> true() , evenodd(x, 0()) -> not(evenodd(x, s(0()))) , evenodd(0(), s(0())) -> false() , evenodd(s(x), s(0())) -> evenodd(x, 0()) } Obligation: innermost runtime complexity Answer: YES(?,O(n^2)) We add following dependency tuples: Strict DPs: { not^#(true()) -> c_1() , not^#(false()) -> c_2() , evenodd^#(x, 0()) -> c_3(not^#(evenodd(x, s(0()))), evenodd^#(x, s(0()))) , evenodd^#(0(), s(0())) -> c_4() , evenodd^#(s(x), s(0())) -> c_5(evenodd^#(x, 0())) } and mark the set of starting terms. We are left with following problem, upon which TcT provides the certificate YES(?,O(n^2)). Strict DPs: { not^#(true()) -> c_1() , not^#(false()) -> c_2() , evenodd^#(x, 0()) -> c_3(not^#(evenodd(x, s(0()))), evenodd^#(x, s(0()))) , evenodd^#(0(), s(0())) -> c_4() , evenodd^#(s(x), s(0())) -> c_5(evenodd^#(x, 0())) } Weak Trs: { not(true()) -> false() , not(false()) -> true() , evenodd(x, 0()) -> not(evenodd(x, s(0()))) , evenodd(0(), s(0())) -> false() , evenodd(s(x), s(0())) -> evenodd(x, 0()) } Obligation: innermost runtime complexity Answer: YES(?,O(n^2)) We estimate the number of application of {1,2,4} by applications of Pre({1,2,4}) = {3}. Here rules are labeled as follows: DPs: { 1: not^#(true()) -> c_1() , 2: not^#(false()) -> c_2() , 3: evenodd^#(x, 0()) -> c_3(not^#(evenodd(x, s(0()))), evenodd^#(x, s(0()))) , 4: evenodd^#(0(), s(0())) -> c_4() , 5: evenodd^#(s(x), s(0())) -> c_5(evenodd^#(x, 0())) } We are left with following problem, upon which TcT provides the certificate YES(?,O(n^2)). Strict DPs: { evenodd^#(x, 0()) -> c_3(not^#(evenodd(x, s(0()))), evenodd^#(x, s(0()))) , evenodd^#(s(x), s(0())) -> c_5(evenodd^#(x, 0())) } Weak DPs: { not^#(true()) -> c_1() , not^#(false()) -> c_2() , evenodd^#(0(), s(0())) -> c_4() } Weak Trs: { not(true()) -> false() , not(false()) -> true() , evenodd(x, 0()) -> not(evenodd(x, s(0()))) , evenodd(0(), s(0())) -> false() , evenodd(s(x), s(0())) -> evenodd(x, 0()) } Obligation: innermost runtime complexity Answer: YES(?,O(n^2)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { not^#(true()) -> c_1() , not^#(false()) -> c_2() , evenodd^#(0(), s(0())) -> c_4() } We are left with following problem, upon which TcT provides the certificate YES(?,O(n^2)). Strict DPs: { evenodd^#(x, 0()) -> c_3(not^#(evenodd(x, s(0()))), evenodd^#(x, s(0()))) , evenodd^#(s(x), s(0())) -> c_5(evenodd^#(x, 0())) } Weak Trs: { not(true()) -> false() , not(false()) -> true() , evenodd(x, 0()) -> not(evenodd(x, s(0()))) , evenodd(0(), s(0())) -> false() , evenodd(s(x), s(0())) -> evenodd(x, 0()) } Obligation: innermost runtime complexity Answer: YES(?,O(n^2)) Due to missing edges in the dependency-graph, the right-hand sides of following rules could be simplified: { evenodd^#(x, 0()) -> c_3(not^#(evenodd(x, s(0()))), evenodd^#(x, s(0()))) } We are left with following problem, upon which TcT provides the certificate YES(?,O(n^2)). Strict DPs: { evenodd^#(x, 0()) -> c_1(evenodd^#(x, s(0()))) , evenodd^#(s(x), s(0())) -> c_2(evenodd^#(x, 0())) } Weak Trs: { not(true()) -> false() , not(false()) -> true() , evenodd(x, 0()) -> not(evenodd(x, s(0()))) , evenodd(0(), s(0())) -> false() , evenodd(s(x), s(0())) -> evenodd(x, 0()) } Obligation: innermost runtime complexity Answer: YES(?,O(n^2)) No rule is usable, rules are removed from the input problem. We are left with following problem, upon which TcT provides the certificate YES(?,O(n^2)). Strict DPs: { evenodd^#(x, 0()) -> c_1(evenodd^#(x, s(0()))) , evenodd^#(s(x), s(0())) -> c_2(evenodd^#(x, 0())) } Obligation: innermost runtime complexity Answer: YES(?,O(n^2)) The following argument positions are usable: Uargs(c_1) = {1}, Uargs(c_2) = {1} TcT has computed following constructor-based matrix interpretation satisfying not(EDA). [0] = [1] [0] [s](x1) = [0 0] x1 + [0] [0 1] [2] [evenodd^#](x1, x2) = [0 2] x1 + [1 0] x2 + [0] [0 0] [1 0] [0] [c_1](x1) = [1 0] x1 + [0] [0 0] [1] [c_2](x1) = [1 1] x1 + [1] [0 0] [0] This order satisfies following ordering constraints: [evenodd^#(x, 0())] = [0 2] x + [1] [0 0] [1] > [0 2] x + [0] [0 0] [1] = [c_1(evenodd^#(x, s(0())))] [evenodd^#(s(x), s(0()))] = [0 2] x + [4] [0 0] [0] > [0 2] x + [3] [0 0] [0] = [c_2(evenodd^#(x, 0()))] Hurray, we answered YES(?,O(n^2))