MAYBE We are left with following problem, upon which TcT provides the certificate MAYBE. Strict Trs: { minus(x, x) -> 0() , minus(x, 0()) -> x , minus(0(), x) -> 0() , minus(s(x), s(y)) -> minus(x, y) , le(0(), y) -> true() , le(s(x), 0()) -> false() , le(s(x), s(y)) -> le(x, y) , quot(x, y) -> if_quot(minus(x, y), y, le(y, 0()), le(y, x)) , if_quot(x, y, true(), z) -> divByZeroError() , if_quot(x, y, false(), true()) -> s(quot(x, y)) , if_quot(x, y, false(), false()) -> 0() } Obligation: innermost runtime complexity Answer: MAYBE We add following dependency tuples: Strict DPs: { minus^#(x, x) -> c_1() , minus^#(x, 0()) -> c_2() , minus^#(0(), x) -> c_3() , minus^#(s(x), s(y)) -> c_4(minus^#(x, y)) , le^#(0(), y) -> c_5() , le^#(s(x), 0()) -> c_6() , le^#(s(x), s(y)) -> c_7(le^#(x, y)) , quot^#(x, y) -> c_8(if_quot^#(minus(x, y), y, le(y, 0()), le(y, x)), minus^#(x, y), le^#(y, 0()), le^#(y, x)) , if_quot^#(x, y, true(), z) -> c_9() , if_quot^#(x, y, false(), true()) -> c_10(quot^#(x, y)) , if_quot^#(x, y, false(), false()) -> c_11() } and mark the set of starting terms. We are left with following problem, upon which TcT provides the certificate MAYBE. Strict DPs: { minus^#(x, x) -> c_1() , minus^#(x, 0()) -> c_2() , minus^#(0(), x) -> c_3() , minus^#(s(x), s(y)) -> c_4(minus^#(x, y)) , le^#(0(), y) -> c_5() , le^#(s(x), 0()) -> c_6() , le^#(s(x), s(y)) -> c_7(le^#(x, y)) , quot^#(x, y) -> c_8(if_quot^#(minus(x, y), y, le(y, 0()), le(y, x)), minus^#(x, y), le^#(y, 0()), le^#(y, x)) , if_quot^#(x, y, true(), z) -> c_9() , if_quot^#(x, y, false(), true()) -> c_10(quot^#(x, y)) , if_quot^#(x, y, false(), false()) -> c_11() } Weak Trs: { minus(x, x) -> 0() , minus(x, 0()) -> x , minus(0(), x) -> 0() , minus(s(x), s(y)) -> minus(x, y) , le(0(), y) -> true() , le(s(x), 0()) -> false() , le(s(x), s(y)) -> le(x, y) , quot(x, y) -> if_quot(minus(x, y), y, le(y, 0()), le(y, x)) , if_quot(x, y, true(), z) -> divByZeroError() , if_quot(x, y, false(), true()) -> s(quot(x, y)) , if_quot(x, y, false(), false()) -> 0() } Obligation: innermost runtime complexity Answer: MAYBE We estimate the number of application of {1,2,3,5,6,9,11} by applications of Pre({1,2,3,5,6,9,11}) = {4,7,8}. Here rules are labeled as follows: DPs: { 1: minus^#(x, x) -> c_1() , 2: minus^#(x, 0()) -> c_2() , 3: minus^#(0(), x) -> c_3() , 4: minus^#(s(x), s(y)) -> c_4(minus^#(x, y)) , 5: le^#(0(), y) -> c_5() , 6: le^#(s(x), 0()) -> c_6() , 7: le^#(s(x), s(y)) -> c_7(le^#(x, y)) , 8: quot^#(x, y) -> c_8(if_quot^#(minus(x, y), y, le(y, 0()), le(y, x)), minus^#(x, y), le^#(y, 0()), le^#(y, x)) , 9: if_quot^#(x, y, true(), z) -> c_9() , 10: if_quot^#(x, y, false(), true()) -> c_10(quot^#(x, y)) , 11: if_quot^#(x, y, false(), false()) -> c_11() } We are left with following problem, upon which TcT provides the certificate MAYBE. Strict DPs: { minus^#(s(x), s(y)) -> c_4(minus^#(x, y)) , le^#(s(x), s(y)) -> c_7(le^#(x, y)) , quot^#(x, y) -> c_8(if_quot^#(minus(x, y), y, le(y, 0()), le(y, x)), minus^#(x, y), le^#(y, 0()), le^#(y, x)) , if_quot^#(x, y, false(), true()) -> c_10(quot^#(x, y)) } Weak DPs: { minus^#(x, x) -> c_1() , minus^#(x, 0()) -> c_2() , minus^#(0(), x) -> c_3() , le^#(0(), y) -> c_5() , le^#(s(x), 0()) -> c_6() , if_quot^#(x, y, true(), z) -> c_9() , if_quot^#(x, y, false(), false()) -> c_11() } Weak Trs: { minus(x, x) -> 0() , minus(x, 0()) -> x , minus(0(), x) -> 0() , minus(s(x), s(y)) -> minus(x, y) , le(0(), y) -> true() , le(s(x), 0()) -> false() , le(s(x), s(y)) -> le(x, y) , quot(x, y) -> if_quot(minus(x, y), y, le(y, 0()), le(y, x)) , if_quot(x, y, true(), z) -> divByZeroError() , if_quot(x, y, false(), true()) -> s(quot(x, y)) , if_quot(x, y, false(), false()) -> 0() } Obligation: innermost runtime complexity Answer: MAYBE The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { minus^#(x, x) -> c_1() , minus^#(x, 0()) -> c_2() , minus^#(0(), x) -> c_3() , le^#(0(), y) -> c_5() , le^#(s(x), 0()) -> c_6() , if_quot^#(x, y, true(), z) -> c_9() , if_quot^#(x, y, false(), false()) -> c_11() } We are left with following problem, upon which TcT provides the certificate MAYBE. Strict DPs: { minus^#(s(x), s(y)) -> c_4(minus^#(x, y)) , le^#(s(x), s(y)) -> c_7(le^#(x, y)) , quot^#(x, y) -> c_8(if_quot^#(minus(x, y), y, le(y, 0()), le(y, x)), minus^#(x, y), le^#(y, 0()), le^#(y, x)) , if_quot^#(x, y, false(), true()) -> c_10(quot^#(x, y)) } Weak Trs: { minus(x, x) -> 0() , minus(x, 0()) -> x , minus(0(), x) -> 0() , minus(s(x), s(y)) -> minus(x, y) , le(0(), y) -> true() , le(s(x), 0()) -> false() , le(s(x), s(y)) -> le(x, y) , quot(x, y) -> if_quot(minus(x, y), y, le(y, 0()), le(y, x)) , if_quot(x, y, true(), z) -> divByZeroError() , if_quot(x, y, false(), true()) -> s(quot(x, y)) , if_quot(x, y, false(), false()) -> 0() } Obligation: innermost runtime complexity Answer: MAYBE Due to missing edges in the dependency-graph, the right-hand sides of following rules could be simplified: { quot^#(x, y) -> c_8(if_quot^#(minus(x, y), y, le(y, 0()), le(y, x)), minus^#(x, y), le^#(y, 0()), le^#(y, x)) } We are left with following problem, upon which TcT provides the certificate MAYBE. Strict DPs: { minus^#(s(x), s(y)) -> c_1(minus^#(x, y)) , le^#(s(x), s(y)) -> c_2(le^#(x, y)) , quot^#(x, y) -> c_3(if_quot^#(minus(x, y), y, le(y, 0()), le(y, x)), minus^#(x, y), le^#(y, x)) , if_quot^#(x, y, false(), true()) -> c_4(quot^#(x, y)) } Weak Trs: { minus(x, x) -> 0() , minus(x, 0()) -> x , minus(0(), x) -> 0() , minus(s(x), s(y)) -> minus(x, y) , le(0(), y) -> true() , le(s(x), 0()) -> false() , le(s(x), s(y)) -> le(x, y) , quot(x, y) -> if_quot(minus(x, y), y, le(y, 0()), le(y, x)) , if_quot(x, y, true(), z) -> divByZeroError() , if_quot(x, y, false(), true()) -> s(quot(x, y)) , if_quot(x, y, false(), false()) -> 0() } Obligation: innermost runtime complexity Answer: MAYBE We replace rewrite rules by usable rules: Weak Usable Rules: { minus(x, x) -> 0() , minus(x, 0()) -> x , minus(0(), x) -> 0() , minus(s(x), s(y)) -> minus(x, y) , le(0(), y) -> true() , le(s(x), 0()) -> false() , le(s(x), s(y)) -> le(x, y) } We are left with following problem, upon which TcT provides the certificate MAYBE. Strict DPs: { minus^#(s(x), s(y)) -> c_1(minus^#(x, y)) , le^#(s(x), s(y)) -> c_2(le^#(x, y)) , quot^#(x, y) -> c_3(if_quot^#(minus(x, y), y, le(y, 0()), le(y, x)), minus^#(x, y), le^#(y, x)) , if_quot^#(x, y, false(), true()) -> c_4(quot^#(x, y)) } Weak Trs: { minus(x, x) -> 0() , minus(x, 0()) -> x , minus(0(), x) -> 0() , minus(s(x), s(y)) -> minus(x, y) , le(0(), y) -> true() , le(s(x), 0()) -> false() , le(s(x), s(y)) -> le(x, y) } Obligation: innermost runtime complexity Answer: MAYBE None of the processors succeeded. Details of failed attempt(s): ----------------------------- 1) 'matrices' failed due to the following reason: None of the processors succeeded. Details of failed attempt(s): ----------------------------- 1) 'matrix interpretation of dimension 4' failed due to the following reason: The input cannot be shown compatible 2) 'matrix interpretation of dimension 3' failed due to the following reason: The input cannot be shown compatible 3) 'matrix interpretation of dimension 3' failed due to the following reason: The input cannot be shown compatible 4) 'matrix interpretation of dimension 2' failed due to the following reason: The input cannot be shown compatible 5) 'matrix interpretation of dimension 2' failed due to the following reason: The input cannot be shown compatible 6) 'matrix interpretation of dimension 1' failed due to the following reason: The input cannot be shown compatible 2) 'empty' failed due to the following reason: Empty strict component of the problem is NOT empty. Arrrr..