YES(?,O(n^1)) We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict Trs: { minus(0(), Y) -> 0() , minus(s(X), s(Y)) -> minus(X, Y) , geq(X, 0()) -> true() , geq(0(), s(Y)) -> false() , geq(s(X), s(Y)) -> geq(X, Y) , div(0(), s(Y)) -> 0() , div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0()) , if(true(), X, Y) -> X , if(false(), X, Y) -> Y } Obligation: innermost runtime complexity Answer: YES(?,O(n^1)) We add following dependency tuples: Strict DPs: { minus^#(0(), Y) -> c_1() , minus^#(s(X), s(Y)) -> c_2(minus^#(X, Y)) , geq^#(X, 0()) -> c_3() , geq^#(0(), s(Y)) -> c_4() , geq^#(s(X), s(Y)) -> c_5(geq^#(X, Y)) , div^#(0(), s(Y)) -> c_6() , div^#(s(X), s(Y)) -> c_7(if^#(geq(X, Y), s(div(minus(X, Y), s(Y))), 0()), geq^#(X, Y), div^#(minus(X, Y), s(Y)), minus^#(X, Y)) , if^#(true(), X, Y) -> c_8() , if^#(false(), X, Y) -> c_9() } and mark the set of starting terms. We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict DPs: { minus^#(0(), Y) -> c_1() , minus^#(s(X), s(Y)) -> c_2(minus^#(X, Y)) , geq^#(X, 0()) -> c_3() , geq^#(0(), s(Y)) -> c_4() , geq^#(s(X), s(Y)) -> c_5(geq^#(X, Y)) , div^#(0(), s(Y)) -> c_6() , div^#(s(X), s(Y)) -> c_7(if^#(geq(X, Y), s(div(minus(X, Y), s(Y))), 0()), geq^#(X, Y), div^#(minus(X, Y), s(Y)), minus^#(X, Y)) , if^#(true(), X, Y) -> c_8() , if^#(false(), X, Y) -> c_9() } Weak Trs: { minus(0(), Y) -> 0() , minus(s(X), s(Y)) -> minus(X, Y) , geq(X, 0()) -> true() , geq(0(), s(Y)) -> false() , geq(s(X), s(Y)) -> geq(X, Y) , div(0(), s(Y)) -> 0() , div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0()) , if(true(), X, Y) -> X , if(false(), X, Y) -> Y } Obligation: innermost runtime complexity Answer: YES(?,O(n^1)) We estimate the number of application of {1,3,4,6,8,9} by applications of Pre({1,3,4,6,8,9}) = {2,5,7}. Here rules are labeled as follows: DPs: { 1: minus^#(0(), Y) -> c_1() , 2: minus^#(s(X), s(Y)) -> c_2(minus^#(X, Y)) , 3: geq^#(X, 0()) -> c_3() , 4: geq^#(0(), s(Y)) -> c_4() , 5: geq^#(s(X), s(Y)) -> c_5(geq^#(X, Y)) , 6: div^#(0(), s(Y)) -> c_6() , 7: div^#(s(X), s(Y)) -> c_7(if^#(geq(X, Y), s(div(minus(X, Y), s(Y))), 0()), geq^#(X, Y), div^#(minus(X, Y), s(Y)), minus^#(X, Y)) , 8: if^#(true(), X, Y) -> c_8() , 9: if^#(false(), X, Y) -> c_9() } We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict DPs: { minus^#(s(X), s(Y)) -> c_2(minus^#(X, Y)) , geq^#(s(X), s(Y)) -> c_5(geq^#(X, Y)) , div^#(s(X), s(Y)) -> c_7(if^#(geq(X, Y), s(div(minus(X, Y), s(Y))), 0()), geq^#(X, Y), div^#(minus(X, Y), s(Y)), minus^#(X, Y)) } Weak DPs: { minus^#(0(), Y) -> c_1() , geq^#(X, 0()) -> c_3() , geq^#(0(), s(Y)) -> c_4() , div^#(0(), s(Y)) -> c_6() , if^#(true(), X, Y) -> c_8() , if^#(false(), X, Y) -> c_9() } Weak Trs: { minus(0(), Y) -> 0() , minus(s(X), s(Y)) -> minus(X, Y) , geq(X, 0()) -> true() , geq(0(), s(Y)) -> false() , geq(s(X), s(Y)) -> geq(X, Y) , div(0(), s(Y)) -> 0() , div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0()) , if(true(), X, Y) -> X , if(false(), X, Y) -> Y } Obligation: innermost runtime complexity Answer: YES(?,O(n^1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { minus^#(0(), Y) -> c_1() , geq^#(X, 0()) -> c_3() , geq^#(0(), s(Y)) -> c_4() , div^#(0(), s(Y)) -> c_6() , if^#(true(), X, Y) -> c_8() , if^#(false(), X, Y) -> c_9() } We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict DPs: { minus^#(s(X), s(Y)) -> c_2(minus^#(X, Y)) , geq^#(s(X), s(Y)) -> c_5(geq^#(X, Y)) , div^#(s(X), s(Y)) -> c_7(if^#(geq(X, Y), s(div(minus(X, Y), s(Y))), 0()), geq^#(X, Y), div^#(minus(X, Y), s(Y)), minus^#(X, Y)) } Weak Trs: { minus(0(), Y) -> 0() , minus(s(X), s(Y)) -> minus(X, Y) , geq(X, 0()) -> true() , geq(0(), s(Y)) -> false() , geq(s(X), s(Y)) -> geq(X, Y) , div(0(), s(Y)) -> 0() , div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0()) , if(true(), X, Y) -> X , if(false(), X, Y) -> Y } Obligation: innermost runtime complexity Answer: YES(?,O(n^1)) Due to missing edges in the dependency-graph, the right-hand sides of following rules could be simplified: { div^#(s(X), s(Y)) -> c_7(if^#(geq(X, Y), s(div(minus(X, Y), s(Y))), 0()), geq^#(X, Y), div^#(minus(X, Y), s(Y)), minus^#(X, Y)) } We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict DPs: { minus^#(s(X), s(Y)) -> c_1(minus^#(X, Y)) , geq^#(s(X), s(Y)) -> c_2(geq^#(X, Y)) , div^#(s(X), s(Y)) -> c_3(geq^#(X, Y), div^#(minus(X, Y), s(Y)), minus^#(X, Y)) } Weak Trs: { minus(0(), Y) -> 0() , minus(s(X), s(Y)) -> minus(X, Y) , geq(X, 0()) -> true() , geq(0(), s(Y)) -> false() , geq(s(X), s(Y)) -> geq(X, Y) , div(0(), s(Y)) -> 0() , div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0()) , if(true(), X, Y) -> X , if(false(), X, Y) -> Y } Obligation: innermost runtime complexity Answer: YES(?,O(n^1)) We replace rewrite rules by usable rules: Weak Usable Rules: { minus(0(), Y) -> 0() , minus(s(X), s(Y)) -> minus(X, Y) } We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict DPs: { minus^#(s(X), s(Y)) -> c_1(minus^#(X, Y)) , geq^#(s(X), s(Y)) -> c_2(geq^#(X, Y)) , div^#(s(X), s(Y)) -> c_3(geq^#(X, Y), div^#(minus(X, Y), s(Y)), minus^#(X, Y)) } Weak Trs: { minus(0(), Y) -> 0() , minus(s(X), s(Y)) -> minus(X, Y) } Obligation: innermost runtime complexity Answer: YES(?,O(n^1)) Due to missing edges in the dependency-graph, the right-hand sides of following rules could be simplified: { div^#(s(X), s(Y)) -> c_3(geq^#(X, Y), div^#(minus(X, Y), s(Y)), minus^#(X, Y)) } We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict DPs: { minus^#(s(X), s(Y)) -> c_1(minus^#(X, Y)) , geq^#(s(X), s(Y)) -> c_2(geq^#(X, Y)) , div^#(s(X), s(Y)) -> c_3(geq^#(X, Y), minus^#(X, Y)) } Weak Trs: { minus(0(), Y) -> 0() , minus(s(X), s(Y)) -> minus(X, Y) } Obligation: innermost runtime complexity Answer: YES(?,O(n^1)) No rule is usable, rules are removed from the input problem. We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict DPs: { minus^#(s(X), s(Y)) -> c_1(minus^#(X, Y)) , geq^#(s(X), s(Y)) -> c_2(geq^#(X, Y)) , div^#(s(X), s(Y)) -> c_3(geq^#(X, Y), minus^#(X, Y)) } Obligation: innermost runtime complexity Answer: YES(?,O(n^1)) The following argument positions are usable: Uargs(c_1) = {1}, Uargs(c_2) = {1}, Uargs(c_3) = {1, 2} TcT has computed following constructor-based matrix interpretation satisfying not(EDA). [s](x1) = [1] x1 + [2] [minus^#](x1, x2) = [1] x1 + [2] [geq^#](x1, x2) = [2] x2 + [0] [div^#](x1, x2) = [1] x1 + [2] x2 + [1] [c_1](x1) = [1] x1 + [0] [c_2](x1) = [1] x1 + [1] [c_3](x1, x2) = [1] x1 + [1] x2 + [3] This order satisfies following ordering constraints: [minus^#(s(X), s(Y))] = [1] X + [4] > [1] X + [2] = [c_1(minus^#(X, Y))] [geq^#(s(X), s(Y))] = [2] Y + [4] > [2] Y + [1] = [c_2(geq^#(X, Y))] [div^#(s(X), s(Y))] = [2] Y + [1] X + [7] > [2] Y + [1] X + [5] = [c_3(geq^#(X, Y), minus^#(X, Y))] Hurray, we answered YES(?,O(n^1))