YES(?,O(n^2)) We are left with following problem, upon which TcT provides the certificate YES(?,O(n^2)). Strict Trs: { concat(leaf(), Y) -> Y , concat(cons(U, V), Y) -> cons(U, concat(V, Y)) , lessleaves(X, leaf()) -> false() , lessleaves(leaf(), cons(W, Z)) -> true() , lessleaves(cons(U, V), cons(W, Z)) -> lessleaves(concat(U, V), concat(W, Z)) } Obligation: innermost runtime complexity Answer: YES(?,O(n^2)) We add following dependency tuples: Strict DPs: { concat^#(leaf(), Y) -> c_1() , concat^#(cons(U, V), Y) -> c_2(concat^#(V, Y)) , lessleaves^#(X, leaf()) -> c_3() , lessleaves^#(leaf(), cons(W, Z)) -> c_4() , lessleaves^#(cons(U, V), cons(W, Z)) -> c_5(lessleaves^#(concat(U, V), concat(W, Z)), concat^#(U, V), concat^#(W, Z)) } and mark the set of starting terms. We are left with following problem, upon which TcT provides the certificate YES(?,O(n^2)). Strict DPs: { concat^#(leaf(), Y) -> c_1() , concat^#(cons(U, V), Y) -> c_2(concat^#(V, Y)) , lessleaves^#(X, leaf()) -> c_3() , lessleaves^#(leaf(), cons(W, Z)) -> c_4() , lessleaves^#(cons(U, V), cons(W, Z)) -> c_5(lessleaves^#(concat(U, V), concat(W, Z)), concat^#(U, V), concat^#(W, Z)) } Weak Trs: { concat(leaf(), Y) -> Y , concat(cons(U, V), Y) -> cons(U, concat(V, Y)) , lessleaves(X, leaf()) -> false() , lessleaves(leaf(), cons(W, Z)) -> true() , lessleaves(cons(U, V), cons(W, Z)) -> lessleaves(concat(U, V), concat(W, Z)) } Obligation: innermost runtime complexity Answer: YES(?,O(n^2)) We estimate the number of application of {1,3,4} by applications of Pre({1,3,4}) = {2,5}. Here rules are labeled as follows: DPs: { 1: concat^#(leaf(), Y) -> c_1() , 2: concat^#(cons(U, V), Y) -> c_2(concat^#(V, Y)) , 3: lessleaves^#(X, leaf()) -> c_3() , 4: lessleaves^#(leaf(), cons(W, Z)) -> c_4() , 5: lessleaves^#(cons(U, V), cons(W, Z)) -> c_5(lessleaves^#(concat(U, V), concat(W, Z)), concat^#(U, V), concat^#(W, Z)) } We are left with following problem, upon which TcT provides the certificate YES(?,O(n^2)). Strict DPs: { concat^#(cons(U, V), Y) -> c_2(concat^#(V, Y)) , lessleaves^#(cons(U, V), cons(W, Z)) -> c_5(lessleaves^#(concat(U, V), concat(W, Z)), concat^#(U, V), concat^#(W, Z)) } Weak DPs: { concat^#(leaf(), Y) -> c_1() , lessleaves^#(X, leaf()) -> c_3() , lessleaves^#(leaf(), cons(W, Z)) -> c_4() } Weak Trs: { concat(leaf(), Y) -> Y , concat(cons(U, V), Y) -> cons(U, concat(V, Y)) , lessleaves(X, leaf()) -> false() , lessleaves(leaf(), cons(W, Z)) -> true() , lessleaves(cons(U, V), cons(W, Z)) -> lessleaves(concat(U, V), concat(W, Z)) } Obligation: innermost runtime complexity Answer: YES(?,O(n^2)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { concat^#(leaf(), Y) -> c_1() , lessleaves^#(X, leaf()) -> c_3() , lessleaves^#(leaf(), cons(W, Z)) -> c_4() } We are left with following problem, upon which TcT provides the certificate YES(?,O(n^2)). Strict DPs: { concat^#(cons(U, V), Y) -> c_2(concat^#(V, Y)) , lessleaves^#(cons(U, V), cons(W, Z)) -> c_5(lessleaves^#(concat(U, V), concat(W, Z)), concat^#(U, V), concat^#(W, Z)) } Weak Trs: { concat(leaf(), Y) -> Y , concat(cons(U, V), Y) -> cons(U, concat(V, Y)) , lessleaves(X, leaf()) -> false() , lessleaves(leaf(), cons(W, Z)) -> true() , lessleaves(cons(U, V), cons(W, Z)) -> lessleaves(concat(U, V), concat(W, Z)) } Obligation: innermost runtime complexity Answer: YES(?,O(n^2)) We replace rewrite rules by usable rules: Weak Usable Rules: { concat(leaf(), Y) -> Y , concat(cons(U, V), Y) -> cons(U, concat(V, Y)) } We are left with following problem, upon which TcT provides the certificate YES(?,O(n^2)). Strict DPs: { concat^#(cons(U, V), Y) -> c_2(concat^#(V, Y)) , lessleaves^#(cons(U, V), cons(W, Z)) -> c_5(lessleaves^#(concat(U, V), concat(W, Z)), concat^#(U, V), concat^#(W, Z)) } Weak Trs: { concat(leaf(), Y) -> Y , concat(cons(U, V), Y) -> cons(U, concat(V, Y)) } Obligation: innermost runtime complexity Answer: YES(?,O(n^2)) The following argument positions are usable: Uargs(c_2) = {1}, Uargs(c_5) = {1, 2, 3} TcT has computed following constructor-based matrix interpretation satisfying not(EDA). [concat](x1, x2) = [2 2] x1 + [2 0] x2 + [0] [0 1] [0 1] [0] [leaf] = [0] [0] [cons](x1, x2) = [0 0] x1 + [1 0] x2 + [1] [1 1] [0 1] [1] [concat^#](x1, x2) = [1 0] x1 + [0] [0 0] [0] [c_2](x1) = [1 0] x1 + [0] [0 0] [0] [lessleaves^#](x1, x2) = [0 2] x1 + [0 1] x2 + [0] [0 0] [0 0] [0] [c_5](x1, x2, x3) = [1 0] x1 + [1 0] x2 + [1 0] x3 + [1] [0 0] [0 0] [0 0] [0] This order satisfies following ordering constraints: [concat(leaf(), Y)] = [2 0] Y + [0] [0 1] [0] >= [1 0] Y + [0] [0 1] [0] = [Y] [concat(cons(U, V), Y)] = [2 0] Y + [2 2] U + [2 2] V + [4] [0 1] [1 1] [0 1] [1] > [2 0] Y + [0 0] U + [2 2] V + [1] [0 1] [1 1] [0 1] [1] = [cons(U, concat(V, Y))] [concat^#(cons(U, V), Y)] = [1 0] V + [1] [0 0] [0] > [1 0] V + [0] [0 0] [0] = [c_2(concat^#(V, Y))] [lessleaves^#(cons(U, V), cons(W, Z))] = [2 2] U + [0 2] V + [1 1] W + [0 1] Z + [3] [0 0] [0 0] [0 0] [0 0] [0] > [1 2] U + [0 2] V + [1 1] W + [0 1] Z + [1] [0 0] [0 0] [0 0] [0 0] [0] = [c_5(lessleaves^#(concat(U, V), concat(W, Z)), concat^#(U, V), concat^#(W, Z))] Hurray, we answered YES(?,O(n^2))