YES(?,O(n^1)) We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict Trs: { f(X) -> n__f(X) , f(n__f(n__a())) -> f(n__g(n__f(n__a()))) , a() -> n__a() , g(X) -> n__g(X) , activate(X) -> X , activate(n__f(X)) -> f(X) , activate(n__a()) -> a() , activate(n__g(X)) -> g(activate(X)) } Obligation: innermost runtime complexity Answer: YES(?,O(n^1)) We add following dependency tuples: Strict DPs: { f^#(X) -> c_1() , f^#(n__f(n__a())) -> c_2(f^#(n__g(n__f(n__a())))) , a^#() -> c_3() , g^#(X) -> c_4() , activate^#(X) -> c_5() , activate^#(n__f(X)) -> c_6(f^#(X)) , activate^#(n__a()) -> c_7(a^#()) , activate^#(n__g(X)) -> c_8(g^#(activate(X)), activate^#(X)) } and mark the set of starting terms. We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict DPs: { f^#(X) -> c_1() , f^#(n__f(n__a())) -> c_2(f^#(n__g(n__f(n__a())))) , a^#() -> c_3() , g^#(X) -> c_4() , activate^#(X) -> c_5() , activate^#(n__f(X)) -> c_6(f^#(X)) , activate^#(n__a()) -> c_7(a^#()) , activate^#(n__g(X)) -> c_8(g^#(activate(X)), activate^#(X)) } Weak Trs: { f(X) -> n__f(X) , f(n__f(n__a())) -> f(n__g(n__f(n__a()))) , a() -> n__a() , g(X) -> n__g(X) , activate(X) -> X , activate(n__f(X)) -> f(X) , activate(n__a()) -> a() , activate(n__g(X)) -> g(activate(X)) } Obligation: innermost runtime complexity Answer: YES(?,O(n^1)) We estimate the number of application of {1,3,4,5} by applications of Pre({1,3,4,5}) = {2,6,7,8}. Here rules are labeled as follows: DPs: { 1: f^#(X) -> c_1() , 2: f^#(n__f(n__a())) -> c_2(f^#(n__g(n__f(n__a())))) , 3: a^#() -> c_3() , 4: g^#(X) -> c_4() , 5: activate^#(X) -> c_5() , 6: activate^#(n__f(X)) -> c_6(f^#(X)) , 7: activate^#(n__a()) -> c_7(a^#()) , 8: activate^#(n__g(X)) -> c_8(g^#(activate(X)), activate^#(X)) } We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict DPs: { f^#(n__f(n__a())) -> c_2(f^#(n__g(n__f(n__a())))) , activate^#(n__f(X)) -> c_6(f^#(X)) , activate^#(n__a()) -> c_7(a^#()) , activate^#(n__g(X)) -> c_8(g^#(activate(X)), activate^#(X)) } Weak DPs: { f^#(X) -> c_1() , a^#() -> c_3() , g^#(X) -> c_4() , activate^#(X) -> c_5() } Weak Trs: { f(X) -> n__f(X) , f(n__f(n__a())) -> f(n__g(n__f(n__a()))) , a() -> n__a() , g(X) -> n__g(X) , activate(X) -> X , activate(n__f(X)) -> f(X) , activate(n__a()) -> a() , activate(n__g(X)) -> g(activate(X)) } Obligation: innermost runtime complexity Answer: YES(?,O(n^1)) We estimate the number of application of {1,3} by applications of Pre({1,3}) = {2,4}. Here rules are labeled as follows: DPs: { 1: f^#(n__f(n__a())) -> c_2(f^#(n__g(n__f(n__a())))) , 2: activate^#(n__f(X)) -> c_6(f^#(X)) , 3: activate^#(n__a()) -> c_7(a^#()) , 4: activate^#(n__g(X)) -> c_8(g^#(activate(X)), activate^#(X)) , 5: f^#(X) -> c_1() , 6: a^#() -> c_3() , 7: g^#(X) -> c_4() , 8: activate^#(X) -> c_5() } We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict DPs: { activate^#(n__f(X)) -> c_6(f^#(X)) , activate^#(n__g(X)) -> c_8(g^#(activate(X)), activate^#(X)) } Weak DPs: { f^#(X) -> c_1() , f^#(n__f(n__a())) -> c_2(f^#(n__g(n__f(n__a())))) , a^#() -> c_3() , g^#(X) -> c_4() , activate^#(X) -> c_5() , activate^#(n__a()) -> c_7(a^#()) } Weak Trs: { f(X) -> n__f(X) , f(n__f(n__a())) -> f(n__g(n__f(n__a()))) , a() -> n__a() , g(X) -> n__g(X) , activate(X) -> X , activate(n__f(X)) -> f(X) , activate(n__a()) -> a() , activate(n__g(X)) -> g(activate(X)) } Obligation: innermost runtime complexity Answer: YES(?,O(n^1)) We estimate the number of application of {1} by applications of Pre({1}) = {2}. Here rules are labeled as follows: DPs: { 1: activate^#(n__f(X)) -> c_6(f^#(X)) , 2: activate^#(n__g(X)) -> c_8(g^#(activate(X)), activate^#(X)) , 3: f^#(X) -> c_1() , 4: f^#(n__f(n__a())) -> c_2(f^#(n__g(n__f(n__a())))) , 5: a^#() -> c_3() , 6: g^#(X) -> c_4() , 7: activate^#(X) -> c_5() , 8: activate^#(n__a()) -> c_7(a^#()) } We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict DPs: { activate^#(n__g(X)) -> c_8(g^#(activate(X)), activate^#(X)) } Weak DPs: { f^#(X) -> c_1() , f^#(n__f(n__a())) -> c_2(f^#(n__g(n__f(n__a())))) , a^#() -> c_3() , g^#(X) -> c_4() , activate^#(X) -> c_5() , activate^#(n__f(X)) -> c_6(f^#(X)) , activate^#(n__a()) -> c_7(a^#()) } Weak Trs: { f(X) -> n__f(X) , f(n__f(n__a())) -> f(n__g(n__f(n__a()))) , a() -> n__a() , g(X) -> n__g(X) , activate(X) -> X , activate(n__f(X)) -> f(X) , activate(n__a()) -> a() , activate(n__g(X)) -> g(activate(X)) } Obligation: innermost runtime complexity Answer: YES(?,O(n^1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { f^#(X) -> c_1() , f^#(n__f(n__a())) -> c_2(f^#(n__g(n__f(n__a())))) , a^#() -> c_3() , g^#(X) -> c_4() , activate^#(X) -> c_5() , activate^#(n__f(X)) -> c_6(f^#(X)) , activate^#(n__a()) -> c_7(a^#()) } We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict DPs: { activate^#(n__g(X)) -> c_8(g^#(activate(X)), activate^#(X)) } Weak Trs: { f(X) -> n__f(X) , f(n__f(n__a())) -> f(n__g(n__f(n__a()))) , a() -> n__a() , g(X) -> n__g(X) , activate(X) -> X , activate(n__f(X)) -> f(X) , activate(n__a()) -> a() , activate(n__g(X)) -> g(activate(X)) } Obligation: innermost runtime complexity Answer: YES(?,O(n^1)) Due to missing edges in the dependency-graph, the right-hand sides of following rules could be simplified: { activate^#(n__g(X)) -> c_8(g^#(activate(X)), activate^#(X)) } We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict DPs: { activate^#(n__g(X)) -> c_1(activate^#(X)) } Weak Trs: { f(X) -> n__f(X) , f(n__f(n__a())) -> f(n__g(n__f(n__a()))) , a() -> n__a() , g(X) -> n__g(X) , activate(X) -> X , activate(n__f(X)) -> f(X) , activate(n__a()) -> a() , activate(n__g(X)) -> g(activate(X)) } Obligation: innermost runtime complexity Answer: YES(?,O(n^1)) No rule is usable, rules are removed from the input problem. We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict DPs: { activate^#(n__g(X)) -> c_1(activate^#(X)) } Obligation: innermost runtime complexity Answer: YES(?,O(n^1)) The following argument positions are usable: Uargs(c_1) = {1} TcT has computed following constructor-based matrix interpretation satisfying not(EDA). [n__g](x1) = [1] x1 + [3] [activate^#](x1) = [1] x1 + [3] [c_1](x1) = [1] x1 + [2] This order satisfies following ordering constraints: [activate^#(n__g(X))] = [1] X + [6] > [1] X + [5] = [c_1(activate^#(X))] Hurray, we answered YES(?,O(n^1))