MAYBE We are left with following problem, upon which TcT provides the certificate MAYBE. Strict Trs: { terms(N) -> cons(recip(sqr(N))) , sqr(0()) -> 0() , sqr(s(X)) -> s(add(sqr(X), dbl(X))) , add(0(), X) -> X , add(s(X), Y) -> s(add(X, Y)) , dbl(0()) -> 0() , dbl(s(X)) -> s(s(dbl(X))) , first(0(), X) -> nil() , first(s(X), cons(Y)) -> cons(Y) } Obligation: innermost runtime complexity Answer: MAYBE We add following dependency tuples: Strict DPs: { terms^#(N) -> c_1(sqr^#(N)) , sqr^#(0()) -> c_2() , sqr^#(s(X)) -> c_3(add^#(sqr(X), dbl(X)), sqr^#(X), dbl^#(X)) , add^#(0(), X) -> c_4() , add^#(s(X), Y) -> c_5(add^#(X, Y)) , dbl^#(0()) -> c_6() , dbl^#(s(X)) -> c_7(dbl^#(X)) , first^#(0(), X) -> c_8() , first^#(s(X), cons(Y)) -> c_9() } and mark the set of starting terms. We are left with following problem, upon which TcT provides the certificate MAYBE. Strict DPs: { terms^#(N) -> c_1(sqr^#(N)) , sqr^#(0()) -> c_2() , sqr^#(s(X)) -> c_3(add^#(sqr(X), dbl(X)), sqr^#(X), dbl^#(X)) , add^#(0(), X) -> c_4() , add^#(s(X), Y) -> c_5(add^#(X, Y)) , dbl^#(0()) -> c_6() , dbl^#(s(X)) -> c_7(dbl^#(X)) , first^#(0(), X) -> c_8() , first^#(s(X), cons(Y)) -> c_9() } Weak Trs: { terms(N) -> cons(recip(sqr(N))) , sqr(0()) -> 0() , sqr(s(X)) -> s(add(sqr(X), dbl(X))) , add(0(), X) -> X , add(s(X), Y) -> s(add(X, Y)) , dbl(0()) -> 0() , dbl(s(X)) -> s(s(dbl(X))) , first(0(), X) -> nil() , first(s(X), cons(Y)) -> cons(Y) } Obligation: innermost runtime complexity Answer: MAYBE We estimate the number of application of {2,4,6,8,9} by applications of Pre({2,4,6,8,9}) = {1,3,5,7}. Here rules are labeled as follows: DPs: { 1: terms^#(N) -> c_1(sqr^#(N)) , 2: sqr^#(0()) -> c_2() , 3: sqr^#(s(X)) -> c_3(add^#(sqr(X), dbl(X)), sqr^#(X), dbl^#(X)) , 4: add^#(0(), X) -> c_4() , 5: add^#(s(X), Y) -> c_5(add^#(X, Y)) , 6: dbl^#(0()) -> c_6() , 7: dbl^#(s(X)) -> c_7(dbl^#(X)) , 8: first^#(0(), X) -> c_8() , 9: first^#(s(X), cons(Y)) -> c_9() } We are left with following problem, upon which TcT provides the certificate MAYBE. Strict DPs: { terms^#(N) -> c_1(sqr^#(N)) , sqr^#(s(X)) -> c_3(add^#(sqr(X), dbl(X)), sqr^#(X), dbl^#(X)) , add^#(s(X), Y) -> c_5(add^#(X, Y)) , dbl^#(s(X)) -> c_7(dbl^#(X)) } Weak DPs: { sqr^#(0()) -> c_2() , add^#(0(), X) -> c_4() , dbl^#(0()) -> c_6() , first^#(0(), X) -> c_8() , first^#(s(X), cons(Y)) -> c_9() } Weak Trs: { terms(N) -> cons(recip(sqr(N))) , sqr(0()) -> 0() , sqr(s(X)) -> s(add(sqr(X), dbl(X))) , add(0(), X) -> X , add(s(X), Y) -> s(add(X, Y)) , dbl(0()) -> 0() , dbl(s(X)) -> s(s(dbl(X))) , first(0(), X) -> nil() , first(s(X), cons(Y)) -> cons(Y) } Obligation: innermost runtime complexity Answer: MAYBE The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { sqr^#(0()) -> c_2() , add^#(0(), X) -> c_4() , dbl^#(0()) -> c_6() , first^#(0(), X) -> c_8() , first^#(s(X), cons(Y)) -> c_9() } We are left with following problem, upon which TcT provides the certificate MAYBE. Strict DPs: { terms^#(N) -> c_1(sqr^#(N)) , sqr^#(s(X)) -> c_3(add^#(sqr(X), dbl(X)), sqr^#(X), dbl^#(X)) , add^#(s(X), Y) -> c_5(add^#(X, Y)) , dbl^#(s(X)) -> c_7(dbl^#(X)) } Weak Trs: { terms(N) -> cons(recip(sqr(N))) , sqr(0()) -> 0() , sqr(s(X)) -> s(add(sqr(X), dbl(X))) , add(0(), X) -> X , add(s(X), Y) -> s(add(X, Y)) , dbl(0()) -> 0() , dbl(s(X)) -> s(s(dbl(X))) , first(0(), X) -> nil() , first(s(X), cons(Y)) -> cons(Y) } Obligation: innermost runtime complexity Answer: MAYBE Consider the dependency graph 1: terms^#(N) -> c_1(sqr^#(N)) -->_1 sqr^#(s(X)) -> c_3(add^#(sqr(X), dbl(X)), sqr^#(X), dbl^#(X)) :2 2: sqr^#(s(X)) -> c_3(add^#(sqr(X), dbl(X)), sqr^#(X), dbl^#(X)) -->_3 dbl^#(s(X)) -> c_7(dbl^#(X)) :4 -->_1 add^#(s(X), Y) -> c_5(add^#(X, Y)) :3 -->_2 sqr^#(s(X)) -> c_3(add^#(sqr(X), dbl(X)), sqr^#(X), dbl^#(X)) :2 3: add^#(s(X), Y) -> c_5(add^#(X, Y)) -->_1 add^#(s(X), Y) -> c_5(add^#(X, Y)) :3 4: dbl^#(s(X)) -> c_7(dbl^#(X)) -->_1 dbl^#(s(X)) -> c_7(dbl^#(X)) :4 Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts). { terms^#(N) -> c_1(sqr^#(N)) } We are left with following problem, upon which TcT provides the certificate MAYBE. Strict DPs: { sqr^#(s(X)) -> c_3(add^#(sqr(X), dbl(X)), sqr^#(X), dbl^#(X)) , add^#(s(X), Y) -> c_5(add^#(X, Y)) , dbl^#(s(X)) -> c_7(dbl^#(X)) } Weak Trs: { terms(N) -> cons(recip(sqr(N))) , sqr(0()) -> 0() , sqr(s(X)) -> s(add(sqr(X), dbl(X))) , add(0(), X) -> X , add(s(X), Y) -> s(add(X, Y)) , dbl(0()) -> 0() , dbl(s(X)) -> s(s(dbl(X))) , first(0(), X) -> nil() , first(s(X), cons(Y)) -> cons(Y) } Obligation: innermost runtime complexity Answer: MAYBE We replace rewrite rules by usable rules: Weak Usable Rules: { sqr(0()) -> 0() , sqr(s(X)) -> s(add(sqr(X), dbl(X))) , add(0(), X) -> X , add(s(X), Y) -> s(add(X, Y)) , dbl(0()) -> 0() , dbl(s(X)) -> s(s(dbl(X))) } We are left with following problem, upon which TcT provides the certificate MAYBE. Strict DPs: { sqr^#(s(X)) -> c_3(add^#(sqr(X), dbl(X)), sqr^#(X), dbl^#(X)) , add^#(s(X), Y) -> c_5(add^#(X, Y)) , dbl^#(s(X)) -> c_7(dbl^#(X)) } Weak Trs: { sqr(0()) -> 0() , sqr(s(X)) -> s(add(sqr(X), dbl(X))) , add(0(), X) -> X , add(s(X), Y) -> s(add(X, Y)) , dbl(0()) -> 0() , dbl(s(X)) -> s(s(dbl(X))) } Obligation: innermost runtime complexity Answer: MAYBE None of the processors succeeded. Details of failed attempt(s): ----------------------------- 1) 'matrices' failed due to the following reason: None of the processors succeeded. Details of failed attempt(s): ----------------------------- 1) 'matrix interpretation of dimension 4' failed due to the following reason: The input cannot be shown compatible 2) 'matrix interpretation of dimension 3' failed due to the following reason: The input cannot be shown compatible 3) 'matrix interpretation of dimension 3' failed due to the following reason: The input cannot be shown compatible 4) 'matrix interpretation of dimension 2' failed due to the following reason: The input cannot be shown compatible 5) 'matrix interpretation of dimension 2' failed due to the following reason: The input cannot be shown compatible 6) 'matrix interpretation of dimension 1' failed due to the following reason: The input cannot be shown compatible 2) 'empty' failed due to the following reason: Empty strict component of the problem is NOT empty. Arrrr..