MAYBE We are left with following problem, upon which TcT provides the certificate MAYBE. Strict Trs: { terms(N) -> cons(recip(sqr(N)), n__terms(s(N))) , terms(X) -> n__terms(X) , sqr(s(X)) -> s(add(sqr(X), dbl(X))) , sqr(0()) -> 0() , add(s(X), Y) -> s(add(X, Y)) , add(0(), X) -> X , dbl(s(X)) -> s(s(dbl(X))) , dbl(0()) -> 0() , first(X1, X2) -> n__first(X1, X2) , first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) , first(0(), X) -> nil() , activate(X) -> X , activate(n__terms(X)) -> terms(X) , activate(n__first(X1, X2)) -> first(X1, X2) } Obligation: innermost runtime complexity Answer: MAYBE We add following dependency tuples: Strict DPs: { terms^#(N) -> c_1(sqr^#(N)) , terms^#(X) -> c_2() , sqr^#(s(X)) -> c_3(add^#(sqr(X), dbl(X)), sqr^#(X), dbl^#(X)) , sqr^#(0()) -> c_4() , add^#(s(X), Y) -> c_5(add^#(X, Y)) , add^#(0(), X) -> c_6() , dbl^#(s(X)) -> c_7(dbl^#(X)) , dbl^#(0()) -> c_8() , first^#(X1, X2) -> c_9() , first^#(s(X), cons(Y, Z)) -> c_10(activate^#(Z)) , first^#(0(), X) -> c_11() , activate^#(X) -> c_12() , activate^#(n__terms(X)) -> c_13(terms^#(X)) , activate^#(n__first(X1, X2)) -> c_14(first^#(X1, X2)) } and mark the set of starting terms. We are left with following problem, upon which TcT provides the certificate MAYBE. Strict DPs: { terms^#(N) -> c_1(sqr^#(N)) , terms^#(X) -> c_2() , sqr^#(s(X)) -> c_3(add^#(sqr(X), dbl(X)), sqr^#(X), dbl^#(X)) , sqr^#(0()) -> c_4() , add^#(s(X), Y) -> c_5(add^#(X, Y)) , add^#(0(), X) -> c_6() , dbl^#(s(X)) -> c_7(dbl^#(X)) , dbl^#(0()) -> c_8() , first^#(X1, X2) -> c_9() , first^#(s(X), cons(Y, Z)) -> c_10(activate^#(Z)) , first^#(0(), X) -> c_11() , activate^#(X) -> c_12() , activate^#(n__terms(X)) -> c_13(terms^#(X)) , activate^#(n__first(X1, X2)) -> c_14(first^#(X1, X2)) } Weak Trs: { terms(N) -> cons(recip(sqr(N)), n__terms(s(N))) , terms(X) -> n__terms(X) , sqr(s(X)) -> s(add(sqr(X), dbl(X))) , sqr(0()) -> 0() , add(s(X), Y) -> s(add(X, Y)) , add(0(), X) -> X , dbl(s(X)) -> s(s(dbl(X))) , dbl(0()) -> 0() , first(X1, X2) -> n__first(X1, X2) , first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) , first(0(), X) -> nil() , activate(X) -> X , activate(n__terms(X)) -> terms(X) , activate(n__first(X1, X2)) -> first(X1, X2) } Obligation: innermost runtime complexity Answer: MAYBE We estimate the number of application of {2,4,6,8,9,11,12} by applications of Pre({2,4,6,8,9,11,12}) = {1,3,5,7,10,13,14}. Here rules are labeled as follows: DPs: { 1: terms^#(N) -> c_1(sqr^#(N)) , 2: terms^#(X) -> c_2() , 3: sqr^#(s(X)) -> c_3(add^#(sqr(X), dbl(X)), sqr^#(X), dbl^#(X)) , 4: sqr^#(0()) -> c_4() , 5: add^#(s(X), Y) -> c_5(add^#(X, Y)) , 6: add^#(0(), X) -> c_6() , 7: dbl^#(s(X)) -> c_7(dbl^#(X)) , 8: dbl^#(0()) -> c_8() , 9: first^#(X1, X2) -> c_9() , 10: first^#(s(X), cons(Y, Z)) -> c_10(activate^#(Z)) , 11: first^#(0(), X) -> c_11() , 12: activate^#(X) -> c_12() , 13: activate^#(n__terms(X)) -> c_13(terms^#(X)) , 14: activate^#(n__first(X1, X2)) -> c_14(first^#(X1, X2)) } We are left with following problem, upon which TcT provides the certificate MAYBE. Strict DPs: { terms^#(N) -> c_1(sqr^#(N)) , sqr^#(s(X)) -> c_3(add^#(sqr(X), dbl(X)), sqr^#(X), dbl^#(X)) , add^#(s(X), Y) -> c_5(add^#(X, Y)) , dbl^#(s(X)) -> c_7(dbl^#(X)) , first^#(s(X), cons(Y, Z)) -> c_10(activate^#(Z)) , activate^#(n__terms(X)) -> c_13(terms^#(X)) , activate^#(n__first(X1, X2)) -> c_14(first^#(X1, X2)) } Weak DPs: { terms^#(X) -> c_2() , sqr^#(0()) -> c_4() , add^#(0(), X) -> c_6() , dbl^#(0()) -> c_8() , first^#(X1, X2) -> c_9() , first^#(0(), X) -> c_11() , activate^#(X) -> c_12() } Weak Trs: { terms(N) -> cons(recip(sqr(N)), n__terms(s(N))) , terms(X) -> n__terms(X) , sqr(s(X)) -> s(add(sqr(X), dbl(X))) , sqr(0()) -> 0() , add(s(X), Y) -> s(add(X, Y)) , add(0(), X) -> X , dbl(s(X)) -> s(s(dbl(X))) , dbl(0()) -> 0() , first(X1, X2) -> n__first(X1, X2) , first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) , first(0(), X) -> nil() , activate(X) -> X , activate(n__terms(X)) -> terms(X) , activate(n__first(X1, X2)) -> first(X1, X2) } Obligation: innermost runtime complexity Answer: MAYBE The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { terms^#(X) -> c_2() , sqr^#(0()) -> c_4() , add^#(0(), X) -> c_6() , dbl^#(0()) -> c_8() , first^#(X1, X2) -> c_9() , first^#(0(), X) -> c_11() , activate^#(X) -> c_12() } We are left with following problem, upon which TcT provides the certificate MAYBE. Strict DPs: { terms^#(N) -> c_1(sqr^#(N)) , sqr^#(s(X)) -> c_3(add^#(sqr(X), dbl(X)), sqr^#(X), dbl^#(X)) , add^#(s(X), Y) -> c_5(add^#(X, Y)) , dbl^#(s(X)) -> c_7(dbl^#(X)) , first^#(s(X), cons(Y, Z)) -> c_10(activate^#(Z)) , activate^#(n__terms(X)) -> c_13(terms^#(X)) , activate^#(n__first(X1, X2)) -> c_14(first^#(X1, X2)) } Weak Trs: { terms(N) -> cons(recip(sqr(N)), n__terms(s(N))) , terms(X) -> n__terms(X) , sqr(s(X)) -> s(add(sqr(X), dbl(X))) , sqr(0()) -> 0() , add(s(X), Y) -> s(add(X, Y)) , add(0(), X) -> X , dbl(s(X)) -> s(s(dbl(X))) , dbl(0()) -> 0() , first(X1, X2) -> n__first(X1, X2) , first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) , first(0(), X) -> nil() , activate(X) -> X , activate(n__terms(X)) -> terms(X) , activate(n__first(X1, X2)) -> first(X1, X2) } Obligation: innermost runtime complexity Answer: MAYBE We replace rewrite rules by usable rules: Weak Usable Rules: { sqr(s(X)) -> s(add(sqr(X), dbl(X))) , sqr(0()) -> 0() , add(s(X), Y) -> s(add(X, Y)) , add(0(), X) -> X , dbl(s(X)) -> s(s(dbl(X))) , dbl(0()) -> 0() } We are left with following problem, upon which TcT provides the certificate MAYBE. Strict DPs: { terms^#(N) -> c_1(sqr^#(N)) , sqr^#(s(X)) -> c_3(add^#(sqr(X), dbl(X)), sqr^#(X), dbl^#(X)) , add^#(s(X), Y) -> c_5(add^#(X, Y)) , dbl^#(s(X)) -> c_7(dbl^#(X)) , first^#(s(X), cons(Y, Z)) -> c_10(activate^#(Z)) , activate^#(n__terms(X)) -> c_13(terms^#(X)) , activate^#(n__first(X1, X2)) -> c_14(first^#(X1, X2)) } Weak Trs: { sqr(s(X)) -> s(add(sqr(X), dbl(X))) , sqr(0()) -> 0() , add(s(X), Y) -> s(add(X, Y)) , add(0(), X) -> X , dbl(s(X)) -> s(s(dbl(X))) , dbl(0()) -> 0() } Obligation: innermost runtime complexity Answer: MAYBE None of the processors succeeded. Details of failed attempt(s): ----------------------------- 1) 'matrices' failed due to the following reason: None of the processors succeeded. Details of failed attempt(s): ----------------------------- 1) 'matrix interpretation of dimension 4' failed due to the following reason: The input cannot be shown compatible 2) 'matrix interpretation of dimension 3' failed due to the following reason: The input cannot be shown compatible 3) 'matrix interpretation of dimension 3' failed due to the following reason: The input cannot be shown compatible 4) 'matrix interpretation of dimension 2' failed due to the following reason: The input cannot be shown compatible 5) 'matrix interpretation of dimension 2' failed due to the following reason: The input cannot be shown compatible 6) 'matrix interpretation of dimension 1' failed due to the following reason: The input cannot be shown compatible 2) 'empty' failed due to the following reason: Empty strict component of the problem is NOT empty. Arrrr..