YES(O(1),O(n^1)) We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict Trs: { fst(X1, X2) -> n__fst(X1, X2) , fst(0(), Z) -> nil() , fst(s(X), cons(Y, Z)) -> cons(Y, n__fst(activate(X), activate(Z))) , activate(X) -> X , activate(n__fst(X1, X2)) -> fst(X1, X2) , activate(n__from(X)) -> from(X) , activate(n__add(X1, X2)) -> add(X1, X2) , activate(n__len(X)) -> len(X) , from(X) -> cons(X, n__from(s(X))) , from(X) -> n__from(X) , add(X1, X2) -> n__add(X1, X2) , add(0(), X) -> X , add(s(X), Y) -> s(n__add(activate(X), Y)) , len(X) -> n__len(X) , len(nil()) -> 0() , len(cons(X, Z)) -> s(n__len(activate(Z))) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) We add following weak dependency pairs: Strict DPs: { fst^#(X1, X2) -> c_1() , fst^#(0(), Z) -> c_2() , fst^#(s(X), cons(Y, Z)) -> c_3(activate^#(X), activate^#(Z)) , activate^#(X) -> c_4() , activate^#(n__fst(X1, X2)) -> c_5(fst^#(X1, X2)) , activate^#(n__from(X)) -> c_6(from^#(X)) , activate^#(n__add(X1, X2)) -> c_7(add^#(X1, X2)) , activate^#(n__len(X)) -> c_8(len^#(X)) , from^#(X) -> c_9() , from^#(X) -> c_10() , add^#(X1, X2) -> c_11() , add^#(0(), X) -> c_12() , add^#(s(X), Y) -> c_13(activate^#(X)) , len^#(X) -> c_14() , len^#(nil()) -> c_15() , len^#(cons(X, Z)) -> c_16(activate^#(Z)) } and mark the set of starting terms. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { fst^#(X1, X2) -> c_1() , fst^#(0(), Z) -> c_2() , fst^#(s(X), cons(Y, Z)) -> c_3(activate^#(X), activate^#(Z)) , activate^#(X) -> c_4() , activate^#(n__fst(X1, X2)) -> c_5(fst^#(X1, X2)) , activate^#(n__from(X)) -> c_6(from^#(X)) , activate^#(n__add(X1, X2)) -> c_7(add^#(X1, X2)) , activate^#(n__len(X)) -> c_8(len^#(X)) , from^#(X) -> c_9() , from^#(X) -> c_10() , add^#(X1, X2) -> c_11() , add^#(0(), X) -> c_12() , add^#(s(X), Y) -> c_13(activate^#(X)) , len^#(X) -> c_14() , len^#(nil()) -> c_15() , len^#(cons(X, Z)) -> c_16(activate^#(Z)) } Strict Trs: { fst(X1, X2) -> n__fst(X1, X2) , fst(0(), Z) -> nil() , fst(s(X), cons(Y, Z)) -> cons(Y, n__fst(activate(X), activate(Z))) , activate(X) -> X , activate(n__fst(X1, X2)) -> fst(X1, X2) , activate(n__from(X)) -> from(X) , activate(n__add(X1, X2)) -> add(X1, X2) , activate(n__len(X)) -> len(X) , from(X) -> cons(X, n__from(s(X))) , from(X) -> n__from(X) , add(X1, X2) -> n__add(X1, X2) , add(0(), X) -> X , add(s(X), Y) -> s(n__add(activate(X), Y)) , len(X) -> n__len(X) , len(nil()) -> 0() , len(cons(X, Z)) -> s(n__len(activate(Z))) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) No rule is usable, rules are removed from the input problem. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { fst^#(X1, X2) -> c_1() , fst^#(0(), Z) -> c_2() , fst^#(s(X), cons(Y, Z)) -> c_3(activate^#(X), activate^#(Z)) , activate^#(X) -> c_4() , activate^#(n__fst(X1, X2)) -> c_5(fst^#(X1, X2)) , activate^#(n__from(X)) -> c_6(from^#(X)) , activate^#(n__add(X1, X2)) -> c_7(add^#(X1, X2)) , activate^#(n__len(X)) -> c_8(len^#(X)) , from^#(X) -> c_9() , from^#(X) -> c_10() , add^#(X1, X2) -> c_11() , add^#(0(), X) -> c_12() , add^#(s(X), Y) -> c_13(activate^#(X)) , len^#(X) -> c_14() , len^#(nil()) -> c_15() , len^#(cons(X, Z)) -> c_16(activate^#(Z)) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) The weightgap principle applies (using the following constant growth matrix-interpretation) The following argument positions are usable: Uargs(c_3) = {1, 2}, Uargs(c_5) = {1}, Uargs(c_6) = {1}, Uargs(c_7) = {1}, Uargs(c_8) = {1}, Uargs(c_13) = {1}, Uargs(c_16) = {1} TcT has computed following constructor-restricted matrix interpretation. [0] = [2] [nil] = [2] [s](x1) = [1] x1 + [1] [cons](x1, x2) = [1] x2 + [2] [n__fst](x1, x2) = [1] x1 + [1] x2 + [1] [n__from](x1) = [1] x1 + [2] [n__add](x1, x2) = [1] x1 + [1] x2 + [1] [n__len](x1) = [1] x1 + [1] [fst^#](x1, x2) = [2] x1 + [2] x2 + [1] [c_1] = [0] [c_2] = [0] [c_3](x1, x2) = [1] x1 + [1] x2 + [2] [activate^#](x1) = [2] x1 + [2] [c_4] = [1] [c_5](x1) = [1] x1 + [1] [c_6](x1) = [1] x1 + [0] [from^#](x1) = [2] x1 + [1] [c_7](x1) = [1] x1 + [1] [add^#](x1, x2) = [2] x1 + [2] x2 + [2] [c_8](x1) = [1] x1 + [1] [len^#](x1) = [2] x1 + [2] [c_9] = [0] [c_10] = [0] [c_11] = [1] [c_12] = [1] [c_13](x1) = [1] x1 + [1] [c_14] = [1] [c_15] = [1] [c_16](x1) = [1] x1 + [1] This order satisfies following ordering constraints: Further, it can be verified that all rules not oriented are covered by the weightgap condition. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak DPs: { fst^#(X1, X2) -> c_1() , fst^#(0(), Z) -> c_2() , fst^#(s(X), cons(Y, Z)) -> c_3(activate^#(X), activate^#(Z)) , activate^#(X) -> c_4() , activate^#(n__fst(X1, X2)) -> c_5(fst^#(X1, X2)) , activate^#(n__from(X)) -> c_6(from^#(X)) , activate^#(n__add(X1, X2)) -> c_7(add^#(X1, X2)) , activate^#(n__len(X)) -> c_8(len^#(X)) , from^#(X) -> c_9() , from^#(X) -> c_10() , add^#(X1, X2) -> c_11() , add^#(0(), X) -> c_12() , add^#(s(X), Y) -> c_13(activate^#(X)) , len^#(X) -> c_14() , len^#(nil()) -> c_15() , len^#(cons(X, Z)) -> c_16(activate^#(Z)) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { fst^#(X1, X2) -> c_1() , fst^#(0(), Z) -> c_2() , fst^#(s(X), cons(Y, Z)) -> c_3(activate^#(X), activate^#(Z)) , activate^#(X) -> c_4() , activate^#(n__fst(X1, X2)) -> c_5(fst^#(X1, X2)) , activate^#(n__from(X)) -> c_6(from^#(X)) , activate^#(n__add(X1, X2)) -> c_7(add^#(X1, X2)) , activate^#(n__len(X)) -> c_8(len^#(X)) , from^#(X) -> c_9() , from^#(X) -> c_10() , add^#(X1, X2) -> c_11() , add^#(0(), X) -> c_12() , add^#(s(X), Y) -> c_13(activate^#(X)) , len^#(X) -> c_14() , len^#(nil()) -> c_15() , len^#(cons(X, Z)) -> c_16(activate^#(Z)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Rules: Empty Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) Empty rules are trivially bounded Hurray, we answered YES(O(1),O(n^1))