YES(O(1),O(n^1)) We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict Trs: { U11(tt(), M, N) -> U12(tt(), activate(M), activate(N)) , U12(tt(), M, N) -> s(plus(activate(N), activate(M))) , activate(X) -> X , plus(N, s(M)) -> U11(tt(), M, N) , plus(N, 0()) -> N } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) We add following weak dependency pairs: Strict DPs: { U11^#(tt(), M, N) -> c_1(U12^#(tt(), activate(M), activate(N))) , U12^#(tt(), M, N) -> c_2(plus^#(activate(N), activate(M))) , plus^#(N, s(M)) -> c_4(U11^#(tt(), M, N)) , plus^#(N, 0()) -> c_5() , activate^#(X) -> c_3() } and mark the set of starting terms. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { U11^#(tt(), M, N) -> c_1(U12^#(tt(), activate(M), activate(N))) , U12^#(tt(), M, N) -> c_2(plus^#(activate(N), activate(M))) , plus^#(N, s(M)) -> c_4(U11^#(tt(), M, N)) , plus^#(N, 0()) -> c_5() , activate^#(X) -> c_3() } Strict Trs: { U11(tt(), M, N) -> U12(tt(), activate(M), activate(N)) , U12(tt(), M, N) -> s(plus(activate(N), activate(M))) , activate(X) -> X , plus(N, s(M)) -> U11(tt(), M, N) , plus(N, 0()) -> N } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) We replace rewrite rules by usable rules: Strict Usable Rules: { activate(X) -> X } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { U11^#(tt(), M, N) -> c_1(U12^#(tt(), activate(M), activate(N))) , U12^#(tt(), M, N) -> c_2(plus^#(activate(N), activate(M))) , plus^#(N, s(M)) -> c_4(U11^#(tt(), M, N)) , plus^#(N, 0()) -> c_5() , activate^#(X) -> c_3() } Strict Trs: { activate(X) -> X } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) The weightgap principle applies (using the following constant growth matrix-interpretation) The following argument positions are usable: Uargs(c_1) = {1}, Uargs(U12^#) = {2, 3}, Uargs(c_2) = {1}, Uargs(plus^#) = {1, 2}, Uargs(c_4) = {1} TcT has computed following constructor-restricted matrix interpretation. [tt] = [2] [activate](x1) = [1] x1 + [2] [s](x1) = [1] x1 + [2] [0] = [2] [U11^#](x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [2] [c_1](x1) = [1] x1 + [0] [U12^#](x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1] [c_2](x1) = [1] x1 + [1] [plus^#](x1, x2) = [1] x1 + [1] x2 + [2] [activate^#](x1) = [1] [c_3] = [1] [c_4](x1) = [1] x1 + [2] [c_5] = [2] This order satisfies following ordering constraints: [activate(X)] = [1] X + [2] > [1] X + [0] = [X] Further, it can be verified that all rules not oriented are covered by the weightgap condition. We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict DPs: { U11^#(tt(), M, N) -> c_1(U12^#(tt(), activate(M), activate(N))) , U12^#(tt(), M, N) -> c_2(plus^#(activate(N), activate(M))) , plus^#(N, s(M)) -> c_4(U11^#(tt(), M, N)) , activate^#(X) -> c_3() } Weak DPs: { plus^#(N, 0()) -> c_5() } Weak Trs: { activate(X) -> X } Obligation: innermost runtime complexity Answer: YES(?,O(n^1)) We estimate the number of application of {4} by applications of Pre({4}) = {}. Here rules are labeled as follows: DPs: { 1: U11^#(tt(), M, N) -> c_1(U12^#(tt(), activate(M), activate(N))) , 2: U12^#(tt(), M, N) -> c_2(plus^#(activate(N), activate(M))) , 3: plus^#(N, s(M)) -> c_4(U11^#(tt(), M, N)) , 4: activate^#(X) -> c_3() , 5: plus^#(N, 0()) -> c_5() } We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict DPs: { U11^#(tt(), M, N) -> c_1(U12^#(tt(), activate(M), activate(N))) , U12^#(tt(), M, N) -> c_2(plus^#(activate(N), activate(M))) , plus^#(N, s(M)) -> c_4(U11^#(tt(), M, N)) } Weak DPs: { plus^#(N, 0()) -> c_5() , activate^#(X) -> c_3() } Weak Trs: { activate(X) -> X } Obligation: innermost runtime complexity Answer: YES(?,O(n^1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { plus^#(N, 0()) -> c_5() , activate^#(X) -> c_3() } We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict DPs: { U11^#(tt(), M, N) -> c_1(U12^#(tt(), activate(M), activate(N))) , U12^#(tt(), M, N) -> c_2(plus^#(activate(N), activate(M))) , plus^#(N, s(M)) -> c_4(U11^#(tt(), M, N)) } Weak Trs: { activate(X) -> X } Obligation: innermost runtime complexity Answer: YES(?,O(n^1)) The following argument positions are usable: Uargs(c_1) = {1}, Uargs(c_2) = {1}, Uargs(c_4) = {1} TcT has computed following constructor-based matrix interpretation satisfying not(EDA). [tt] = [2] [activate](x1) = [1] x1 + [0] [s](x1) = [1] x1 + [2] [U11^#](x1, x2, x3) = [1] x1 + [2] x2 + [0] [c_1](x1) = [1] x1 + [0] [U12^#](x1, x2, x3) = [2] x2 + [1] [c_2](x1) = [1] x1 + [0] [plus^#](x1, x2) = [2] x2 + [0] [c_4](x1) = [1] x1 + [1] This order satisfies following ordering constraints: [activate(X)] = [1] X + [0] >= [1] X + [0] = [X] [U11^#(tt(), M, N)] = [2] M + [2] > [2] M + [1] = [c_1(U12^#(tt(), activate(M), activate(N)))] [U12^#(tt(), M, N)] = [2] M + [1] > [2] M + [0] = [c_2(plus^#(activate(N), activate(M)))] [plus^#(N, s(M))] = [2] M + [4] > [2] M + [3] = [c_4(U11^#(tt(), M, N))] Hurray, we answered YES(O(1),O(n^1))