MAYBE We are left with following problem, upon which TcT provides the certificate MAYBE. Strict Trs: { intlist(nil()) -> nil() , intlist(cons(x, y)) -> cons(s(x), intlist(y)) , intlist(cons(x, nil())) -> cons(s(x), nil()) , int(x, x) -> cons(x, nil()) , int(s(x), s(y)) -> intlist(int(x, y)) , int(s(x), 0()) -> nil() , int(0(), s(y)) -> cons(0(), int(s(0()), s(y))) } Obligation: innermost runtime complexity Answer: MAYBE We add following dependency tuples: Strict DPs: { intlist^#(nil()) -> c_1() , intlist^#(cons(x, y)) -> c_2(intlist^#(y)) , intlist^#(cons(x, nil())) -> c_3() , int^#(x, x) -> c_4() , int^#(s(x), s(y)) -> c_5(intlist^#(int(x, y)), int^#(x, y)) , int^#(s(x), 0()) -> c_6() , int^#(0(), s(y)) -> c_7(int^#(s(0()), s(y))) } and mark the set of starting terms. We are left with following problem, upon which TcT provides the certificate MAYBE. Strict DPs: { intlist^#(nil()) -> c_1() , intlist^#(cons(x, y)) -> c_2(intlist^#(y)) , intlist^#(cons(x, nil())) -> c_3() , int^#(x, x) -> c_4() , int^#(s(x), s(y)) -> c_5(intlist^#(int(x, y)), int^#(x, y)) , int^#(s(x), 0()) -> c_6() , int^#(0(), s(y)) -> c_7(int^#(s(0()), s(y))) } Weak Trs: { intlist(nil()) -> nil() , intlist(cons(x, y)) -> cons(s(x), intlist(y)) , intlist(cons(x, nil())) -> cons(s(x), nil()) , int(x, x) -> cons(x, nil()) , int(s(x), s(y)) -> intlist(int(x, y)) , int(s(x), 0()) -> nil() , int(0(), s(y)) -> cons(0(), int(s(0()), s(y))) } Obligation: innermost runtime complexity Answer: MAYBE We estimate the number of application of {1,3,4,6} by applications of Pre({1,3,4,6}) = {2,5,7}. Here rules are labeled as follows: DPs: { 1: intlist^#(nil()) -> c_1() , 2: intlist^#(cons(x, y)) -> c_2(intlist^#(y)) , 3: intlist^#(cons(x, nil())) -> c_3() , 4: int^#(x, x) -> c_4() , 5: int^#(s(x), s(y)) -> c_5(intlist^#(int(x, y)), int^#(x, y)) , 6: int^#(s(x), 0()) -> c_6() , 7: int^#(0(), s(y)) -> c_7(int^#(s(0()), s(y))) } We are left with following problem, upon which TcT provides the certificate MAYBE. Strict DPs: { intlist^#(cons(x, y)) -> c_2(intlist^#(y)) , int^#(s(x), s(y)) -> c_5(intlist^#(int(x, y)), int^#(x, y)) , int^#(0(), s(y)) -> c_7(int^#(s(0()), s(y))) } Weak DPs: { intlist^#(nil()) -> c_1() , intlist^#(cons(x, nil())) -> c_3() , int^#(x, x) -> c_4() , int^#(s(x), 0()) -> c_6() } Weak Trs: { intlist(nil()) -> nil() , intlist(cons(x, y)) -> cons(s(x), intlist(y)) , intlist(cons(x, nil())) -> cons(s(x), nil()) , int(x, x) -> cons(x, nil()) , int(s(x), s(y)) -> intlist(int(x, y)) , int(s(x), 0()) -> nil() , int(0(), s(y)) -> cons(0(), int(s(0()), s(y))) } Obligation: innermost runtime complexity Answer: MAYBE The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { intlist^#(nil()) -> c_1() , intlist^#(cons(x, nil())) -> c_3() , int^#(x, x) -> c_4() , int^#(s(x), 0()) -> c_6() } We are left with following problem, upon which TcT provides the certificate MAYBE. Strict DPs: { intlist^#(cons(x, y)) -> c_2(intlist^#(y)) , int^#(s(x), s(y)) -> c_5(intlist^#(int(x, y)), int^#(x, y)) , int^#(0(), s(y)) -> c_7(int^#(s(0()), s(y))) } Weak Trs: { intlist(nil()) -> nil() , intlist(cons(x, y)) -> cons(s(x), intlist(y)) , intlist(cons(x, nil())) -> cons(s(x), nil()) , int(x, x) -> cons(x, nil()) , int(s(x), s(y)) -> intlist(int(x, y)) , int(s(x), 0()) -> nil() , int(0(), s(y)) -> cons(0(), int(s(0()), s(y))) } Obligation: innermost runtime complexity Answer: MAYBE The input cannot be shown compatible Arrrr..