YES(?,O(n^2)) We are left with following problem, upon which TcT provides the certificate YES(?,O(n^2)). Strict Trs: { minus(0(), Y) -> 0() , minus(s(X), s(Y)) -> minus(X, Y) , geq(X, 0()) -> true() , geq(0(), s(Y)) -> false() , geq(s(X), s(Y)) -> geq(X, Y) , div(0(), s(Y)) -> 0() , div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0()) , if(true(), X, Y) -> X , if(false(), X, Y) -> Y } Obligation: innermost runtime complexity Answer: YES(?,O(n^2)) We add following dependency tuples: Strict DPs: { minus^#(0(), Y) -> c_1() , minus^#(s(X), s(Y)) -> c_2(minus^#(X, Y)) , geq^#(X, 0()) -> c_3() , geq^#(0(), s(Y)) -> c_4() , geq^#(s(X), s(Y)) -> c_5(geq^#(X, Y)) , div^#(0(), s(Y)) -> c_6() , div^#(s(X), s(Y)) -> c_7(if^#(geq(X, Y), s(div(minus(X, Y), s(Y))), 0()), geq^#(X, Y), div^#(minus(X, Y), s(Y)), minus^#(X, Y)) , if^#(true(), X, Y) -> c_8() , if^#(false(), X, Y) -> c_9() } and mark the set of starting terms. We are left with following problem, upon which TcT provides the certificate YES(?,O(n^2)). Strict DPs: { minus^#(0(), Y) -> c_1() , minus^#(s(X), s(Y)) -> c_2(minus^#(X, Y)) , geq^#(X, 0()) -> c_3() , geq^#(0(), s(Y)) -> c_4() , geq^#(s(X), s(Y)) -> c_5(geq^#(X, Y)) , div^#(0(), s(Y)) -> c_6() , div^#(s(X), s(Y)) -> c_7(if^#(geq(X, Y), s(div(minus(X, Y), s(Y))), 0()), geq^#(X, Y), div^#(minus(X, Y), s(Y)), minus^#(X, Y)) , if^#(true(), X, Y) -> c_8() , if^#(false(), X, Y) -> c_9() } Weak Trs: { minus(0(), Y) -> 0() , minus(s(X), s(Y)) -> minus(X, Y) , geq(X, 0()) -> true() , geq(0(), s(Y)) -> false() , geq(s(X), s(Y)) -> geq(X, Y) , div(0(), s(Y)) -> 0() , div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0()) , if(true(), X, Y) -> X , if(false(), X, Y) -> Y } Obligation: innermost runtime complexity Answer: YES(?,O(n^2)) We estimate the number of application of {1,3,4,6,8,9} by applications of Pre({1,3,4,6,8,9}) = {2,5,7}. Here rules are labeled as follows: DPs: { 1: minus^#(0(), Y) -> c_1() , 2: minus^#(s(X), s(Y)) -> c_2(minus^#(X, Y)) , 3: geq^#(X, 0()) -> c_3() , 4: geq^#(0(), s(Y)) -> c_4() , 5: geq^#(s(X), s(Y)) -> c_5(geq^#(X, Y)) , 6: div^#(0(), s(Y)) -> c_6() , 7: div^#(s(X), s(Y)) -> c_7(if^#(geq(X, Y), s(div(minus(X, Y), s(Y))), 0()), geq^#(X, Y), div^#(minus(X, Y), s(Y)), minus^#(X, Y)) , 8: if^#(true(), X, Y) -> c_8() , 9: if^#(false(), X, Y) -> c_9() } We are left with following problem, upon which TcT provides the certificate YES(?,O(n^2)). Strict DPs: { minus^#(s(X), s(Y)) -> c_2(minus^#(X, Y)) , geq^#(s(X), s(Y)) -> c_5(geq^#(X, Y)) , div^#(s(X), s(Y)) -> c_7(if^#(geq(X, Y), s(div(minus(X, Y), s(Y))), 0()), geq^#(X, Y), div^#(minus(X, Y), s(Y)), minus^#(X, Y)) } Weak DPs: { minus^#(0(), Y) -> c_1() , geq^#(X, 0()) -> c_3() , geq^#(0(), s(Y)) -> c_4() , div^#(0(), s(Y)) -> c_6() , if^#(true(), X, Y) -> c_8() , if^#(false(), X, Y) -> c_9() } Weak Trs: { minus(0(), Y) -> 0() , minus(s(X), s(Y)) -> minus(X, Y) , geq(X, 0()) -> true() , geq(0(), s(Y)) -> false() , geq(s(X), s(Y)) -> geq(X, Y) , div(0(), s(Y)) -> 0() , div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0()) , if(true(), X, Y) -> X , if(false(), X, Y) -> Y } Obligation: innermost runtime complexity Answer: YES(?,O(n^2)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { minus^#(0(), Y) -> c_1() , geq^#(X, 0()) -> c_3() , geq^#(0(), s(Y)) -> c_4() , div^#(0(), s(Y)) -> c_6() , if^#(true(), X, Y) -> c_8() , if^#(false(), X, Y) -> c_9() } We are left with following problem, upon which TcT provides the certificate YES(?,O(n^2)). Strict DPs: { minus^#(s(X), s(Y)) -> c_2(minus^#(X, Y)) , geq^#(s(X), s(Y)) -> c_5(geq^#(X, Y)) , div^#(s(X), s(Y)) -> c_7(if^#(geq(X, Y), s(div(minus(X, Y), s(Y))), 0()), geq^#(X, Y), div^#(minus(X, Y), s(Y)), minus^#(X, Y)) } Weak Trs: { minus(0(), Y) -> 0() , minus(s(X), s(Y)) -> minus(X, Y) , geq(X, 0()) -> true() , geq(0(), s(Y)) -> false() , geq(s(X), s(Y)) -> geq(X, Y) , div(0(), s(Y)) -> 0() , div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0()) , if(true(), X, Y) -> X , if(false(), X, Y) -> Y } Obligation: innermost runtime complexity Answer: YES(?,O(n^2)) Due to missing edges in the dependency-graph, the right-hand sides of following rules could be simplified: { div^#(s(X), s(Y)) -> c_7(if^#(geq(X, Y), s(div(minus(X, Y), s(Y))), 0()), geq^#(X, Y), div^#(minus(X, Y), s(Y)), minus^#(X, Y)) } We are left with following problem, upon which TcT provides the certificate YES(?,O(n^2)). Strict DPs: { minus^#(s(X), s(Y)) -> c_1(minus^#(X, Y)) , geq^#(s(X), s(Y)) -> c_2(geq^#(X, Y)) , div^#(s(X), s(Y)) -> c_3(geq^#(X, Y), div^#(minus(X, Y), s(Y)), minus^#(X, Y)) } Weak Trs: { minus(0(), Y) -> 0() , minus(s(X), s(Y)) -> minus(X, Y) , geq(X, 0()) -> true() , geq(0(), s(Y)) -> false() , geq(s(X), s(Y)) -> geq(X, Y) , div(0(), s(Y)) -> 0() , div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0()) , if(true(), X, Y) -> X , if(false(), X, Y) -> Y } Obligation: innermost runtime complexity Answer: YES(?,O(n^2)) We replace rewrite rules by usable rules: Weak Usable Rules: { minus(0(), Y) -> 0() , minus(s(X), s(Y)) -> minus(X, Y) } We are left with following problem, upon which TcT provides the certificate YES(?,O(n^2)). Strict DPs: { minus^#(s(X), s(Y)) -> c_1(minus^#(X, Y)) , geq^#(s(X), s(Y)) -> c_2(geq^#(X, Y)) , div^#(s(X), s(Y)) -> c_3(geq^#(X, Y), div^#(minus(X, Y), s(Y)), minus^#(X, Y)) } Weak Trs: { minus(0(), Y) -> 0() , minus(s(X), s(Y)) -> minus(X, Y) } Obligation: innermost runtime complexity Answer: YES(?,O(n^2)) Due to missing edges in the dependency-graph, the right-hand sides of following rules could be simplified: { div^#(s(X), s(Y)) -> c_3(geq^#(X, Y), div^#(minus(X, Y), s(Y)), minus^#(X, Y)) } We are left with following problem, upon which TcT provides the certificate YES(?,O(n^2)). Strict DPs: { minus^#(s(X), s(Y)) -> c_1(minus^#(X, Y)) , geq^#(s(X), s(Y)) -> c_2(geq^#(X, Y)) , div^#(s(X), s(Y)) -> c_3(geq^#(X, Y), minus^#(X, Y)) } Weak Trs: { minus(0(), Y) -> 0() , minus(s(X), s(Y)) -> minus(X, Y) } Obligation: innermost runtime complexity Answer: YES(?,O(n^2)) No rule is usable, rules are removed from the input problem. We are left with following problem, upon which TcT provides the certificate YES(?,O(n^2)). Strict DPs: { minus^#(s(X), s(Y)) -> c_1(minus^#(X, Y)) , geq^#(s(X), s(Y)) -> c_2(geq^#(X, Y)) , div^#(s(X), s(Y)) -> c_3(geq^#(X, Y), minus^#(X, Y)) } Obligation: innermost runtime complexity Answer: YES(?,O(n^2)) The input was oriented with the instance of 'Small Polynomial Path Order (PS)' as induced by the safe mapping safe(s) = {1}, safe(minus^#) = {1}, safe(geq^#) = {1}, safe(div^#) = {}, safe(c_1) = {}, safe(c_2) = {}, safe(c_3) = {} and precedence div^# > minus^#, div^# > geq^#, minus^# ~ geq^# . Following symbols are considered recursive: {minus^#, geq^#, div^#} The recursion depth is 2. Further, following argument filtering is employed: pi(s) = [1], pi(minus^#) = [2], pi(geq^#) = [2], pi(div^#) = [2], pi(c_1) = [1], pi(c_2) = [1], pi(c_3) = [1, 2] Usable defined function symbols are a subset of: {minus^#, geq^#, div^#} For your convenience, here are the satisfied ordering constraints: pi(minus^#(s(X), s(Y))) = minus^#(s(; Y);) > c_1(minus^#(Y;);) = pi(c_1(minus^#(X, Y))) pi(geq^#(s(X), s(Y))) = geq^#(s(; Y);) > c_2(geq^#(Y;);) = pi(c_2(geq^#(X, Y))) pi(div^#(s(X), s(Y))) = div^#(s(; Y);) > c_3(geq^#(Y;), minus^#(Y;);) = pi(c_3(geq^#(X, Y), minus^#(X, Y))) Hurray, we answered YES(?,O(n^2))