MAYBE We are left with following problem, upon which TcT provides the certificate MAYBE. Strict Trs: { rev1(X, cons(Y, L)) -> rev1(Y, L) , rev1(0(), nil()) -> 0() , rev1(s(X), nil()) -> s(X) , rev(nil()) -> nil() , rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L)) , rev2(X, nil()) -> nil() , rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L)))) } Obligation: innermost runtime complexity Answer: MAYBE We add following dependency tuples: Strict DPs: { rev1^#(X, cons(Y, L)) -> c_1(rev1^#(Y, L)) , rev1^#(0(), nil()) -> c_2() , rev1^#(s(X), nil()) -> c_3() , rev^#(nil()) -> c_4() , rev^#(cons(X, L)) -> c_5(rev1^#(X, L), rev2^#(X, L)) , rev2^#(X, nil()) -> c_6() , rev2^#(X, cons(Y, L)) -> c_7(rev^#(cons(X, rev(rev2(Y, L)))), rev^#(rev2(Y, L)), rev2^#(Y, L)) } and mark the set of starting terms. We are left with following problem, upon which TcT provides the certificate MAYBE. Strict DPs: { rev1^#(X, cons(Y, L)) -> c_1(rev1^#(Y, L)) , rev1^#(0(), nil()) -> c_2() , rev1^#(s(X), nil()) -> c_3() , rev^#(nil()) -> c_4() , rev^#(cons(X, L)) -> c_5(rev1^#(X, L), rev2^#(X, L)) , rev2^#(X, nil()) -> c_6() , rev2^#(X, cons(Y, L)) -> c_7(rev^#(cons(X, rev(rev2(Y, L)))), rev^#(rev2(Y, L)), rev2^#(Y, L)) } Weak Trs: { rev1(X, cons(Y, L)) -> rev1(Y, L) , rev1(0(), nil()) -> 0() , rev1(s(X), nil()) -> s(X) , rev(nil()) -> nil() , rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L)) , rev2(X, nil()) -> nil() , rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L)))) } Obligation: innermost runtime complexity Answer: MAYBE We estimate the number of application of {2,3,4,6} by applications of Pre({2,3,4,6}) = {1,5,7}. Here rules are labeled as follows: DPs: { 1: rev1^#(X, cons(Y, L)) -> c_1(rev1^#(Y, L)) , 2: rev1^#(0(), nil()) -> c_2() , 3: rev1^#(s(X), nil()) -> c_3() , 4: rev^#(nil()) -> c_4() , 5: rev^#(cons(X, L)) -> c_5(rev1^#(X, L), rev2^#(X, L)) , 6: rev2^#(X, nil()) -> c_6() , 7: rev2^#(X, cons(Y, L)) -> c_7(rev^#(cons(X, rev(rev2(Y, L)))), rev^#(rev2(Y, L)), rev2^#(Y, L)) } We are left with following problem, upon which TcT provides the certificate MAYBE. Strict DPs: { rev1^#(X, cons(Y, L)) -> c_1(rev1^#(Y, L)) , rev^#(cons(X, L)) -> c_5(rev1^#(X, L), rev2^#(X, L)) , rev2^#(X, cons(Y, L)) -> c_7(rev^#(cons(X, rev(rev2(Y, L)))), rev^#(rev2(Y, L)), rev2^#(Y, L)) } Weak DPs: { rev1^#(0(), nil()) -> c_2() , rev1^#(s(X), nil()) -> c_3() , rev^#(nil()) -> c_4() , rev2^#(X, nil()) -> c_6() } Weak Trs: { rev1(X, cons(Y, L)) -> rev1(Y, L) , rev1(0(), nil()) -> 0() , rev1(s(X), nil()) -> s(X) , rev(nil()) -> nil() , rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L)) , rev2(X, nil()) -> nil() , rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L)))) } Obligation: innermost runtime complexity Answer: MAYBE The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { rev1^#(0(), nil()) -> c_2() , rev1^#(s(X), nil()) -> c_3() , rev^#(nil()) -> c_4() , rev2^#(X, nil()) -> c_6() } We are left with following problem, upon which TcT provides the certificate MAYBE. Strict DPs: { rev1^#(X, cons(Y, L)) -> c_1(rev1^#(Y, L)) , rev^#(cons(X, L)) -> c_5(rev1^#(X, L), rev2^#(X, L)) , rev2^#(X, cons(Y, L)) -> c_7(rev^#(cons(X, rev(rev2(Y, L)))), rev^#(rev2(Y, L)), rev2^#(Y, L)) } Weak Trs: { rev1(X, cons(Y, L)) -> rev1(Y, L) , rev1(0(), nil()) -> 0() , rev1(s(X), nil()) -> s(X) , rev(nil()) -> nil() , rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L)) , rev2(X, nil()) -> nil() , rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L)))) } Obligation: innermost runtime complexity Answer: MAYBE The input cannot be shown compatible Arrrr..