YES(?,O(n^1)) We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict Trs: { a__f(X1, X2, X3) -> f(X1, X2, X3) , a__f(b(), X, c()) -> a__f(X, a__c(), X) , a__c() -> b() , a__c() -> c() , mark(b()) -> b() , mark(c()) -> a__c() , mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) } Obligation: innermost runtime complexity Answer: YES(?,O(n^1)) We add following dependency tuples: Strict DPs: { a__f^#(X1, X2, X3) -> c_1() , a__f^#(b(), X, c()) -> c_2(a__f^#(X, a__c(), X), a__c^#()) , a__c^#() -> c_3() , a__c^#() -> c_4() , mark^#(b()) -> c_5() , mark^#(c()) -> c_6(a__c^#()) , mark^#(f(X1, X2, X3)) -> c_7(a__f^#(X1, mark(X2), X3), mark^#(X2)) } and mark the set of starting terms. We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict DPs: { a__f^#(X1, X2, X3) -> c_1() , a__f^#(b(), X, c()) -> c_2(a__f^#(X, a__c(), X), a__c^#()) , a__c^#() -> c_3() , a__c^#() -> c_4() , mark^#(b()) -> c_5() , mark^#(c()) -> c_6(a__c^#()) , mark^#(f(X1, X2, X3)) -> c_7(a__f^#(X1, mark(X2), X3), mark^#(X2)) } Weak Trs: { a__f(X1, X2, X3) -> f(X1, X2, X3) , a__f(b(), X, c()) -> a__f(X, a__c(), X) , a__c() -> b() , a__c() -> c() , mark(b()) -> b() , mark(c()) -> a__c() , mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) } Obligation: innermost runtime complexity Answer: YES(?,O(n^1)) We estimate the number of application of {1,3,4,5} by applications of Pre({1,3,4,5}) = {2,6,7}. Here rules are labeled as follows: DPs: { 1: a__f^#(X1, X2, X3) -> c_1() , 2: a__f^#(b(), X, c()) -> c_2(a__f^#(X, a__c(), X), a__c^#()) , 3: a__c^#() -> c_3() , 4: a__c^#() -> c_4() , 5: mark^#(b()) -> c_5() , 6: mark^#(c()) -> c_6(a__c^#()) , 7: mark^#(f(X1, X2, X3)) -> c_7(a__f^#(X1, mark(X2), X3), mark^#(X2)) } We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict DPs: { a__f^#(b(), X, c()) -> c_2(a__f^#(X, a__c(), X), a__c^#()) , mark^#(c()) -> c_6(a__c^#()) , mark^#(f(X1, X2, X3)) -> c_7(a__f^#(X1, mark(X2), X3), mark^#(X2)) } Weak DPs: { a__f^#(X1, X2, X3) -> c_1() , a__c^#() -> c_3() , a__c^#() -> c_4() , mark^#(b()) -> c_5() } Weak Trs: { a__f(X1, X2, X3) -> f(X1, X2, X3) , a__f(b(), X, c()) -> a__f(X, a__c(), X) , a__c() -> b() , a__c() -> c() , mark(b()) -> b() , mark(c()) -> a__c() , mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) } Obligation: innermost runtime complexity Answer: YES(?,O(n^1)) We estimate the number of application of {1,2} by applications of Pre({1,2}) = {3}. Here rules are labeled as follows: DPs: { 1: a__f^#(b(), X, c()) -> c_2(a__f^#(X, a__c(), X), a__c^#()) , 2: mark^#(c()) -> c_6(a__c^#()) , 3: mark^#(f(X1, X2, X3)) -> c_7(a__f^#(X1, mark(X2), X3), mark^#(X2)) , 4: a__f^#(X1, X2, X3) -> c_1() , 5: a__c^#() -> c_3() , 6: a__c^#() -> c_4() , 7: mark^#(b()) -> c_5() } We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict DPs: { mark^#(f(X1, X2, X3)) -> c_7(a__f^#(X1, mark(X2), X3), mark^#(X2)) } Weak DPs: { a__f^#(X1, X2, X3) -> c_1() , a__f^#(b(), X, c()) -> c_2(a__f^#(X, a__c(), X), a__c^#()) , a__c^#() -> c_3() , a__c^#() -> c_4() , mark^#(b()) -> c_5() , mark^#(c()) -> c_6(a__c^#()) } Weak Trs: { a__f(X1, X2, X3) -> f(X1, X2, X3) , a__f(b(), X, c()) -> a__f(X, a__c(), X) , a__c() -> b() , a__c() -> c() , mark(b()) -> b() , mark(c()) -> a__c() , mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) } Obligation: innermost runtime complexity Answer: YES(?,O(n^1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { a__f^#(X1, X2, X3) -> c_1() , a__f^#(b(), X, c()) -> c_2(a__f^#(X, a__c(), X), a__c^#()) , a__c^#() -> c_3() , a__c^#() -> c_4() , mark^#(b()) -> c_5() , mark^#(c()) -> c_6(a__c^#()) } We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict DPs: { mark^#(f(X1, X2, X3)) -> c_7(a__f^#(X1, mark(X2), X3), mark^#(X2)) } Weak Trs: { a__f(X1, X2, X3) -> f(X1, X2, X3) , a__f(b(), X, c()) -> a__f(X, a__c(), X) , a__c() -> b() , a__c() -> c() , mark(b()) -> b() , mark(c()) -> a__c() , mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) } Obligation: innermost runtime complexity Answer: YES(?,O(n^1)) Due to missing edges in the dependency-graph, the right-hand sides of following rules could be simplified: { mark^#(f(X1, X2, X3)) -> c_7(a__f^#(X1, mark(X2), X3), mark^#(X2)) } We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict DPs: { mark^#(f(X1, X2, X3)) -> c_1(mark^#(X2)) } Weak Trs: { a__f(X1, X2, X3) -> f(X1, X2, X3) , a__f(b(), X, c()) -> a__f(X, a__c(), X) , a__c() -> b() , a__c() -> c() , mark(b()) -> b() , mark(c()) -> a__c() , mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) } Obligation: innermost runtime complexity Answer: YES(?,O(n^1)) No rule is usable, rules are removed from the input problem. We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict DPs: { mark^#(f(X1, X2, X3)) -> c_1(mark^#(X2)) } Obligation: innermost runtime complexity Answer: YES(?,O(n^1)) The input was oriented with the instance of 'Small Polynomial Path Order (PS)' as induced by the safe mapping safe(f) = {1, 2, 3}, safe(mark^#) = {}, safe(c_1) = {} and precedence empty . Following symbols are considered recursive: {mark^#} The recursion depth is 1. Further, following argument filtering is employed: pi(f) = [1, 2, 3], pi(mark^#) = [1], pi(c_1) = [1] Usable defined function symbols are a subset of: {mark^#} For your convenience, here are the satisfied ordering constraints: pi(mark^#(f(X1, X2, X3))) = mark^#(f(; X1, X2, X3);) > c_1(mark^#(X2;);) = pi(c_1(mark^#(X2))) Hurray, we answered YES(?,O(n^1))