MAYBE We are left with following problem, upon which TcT provides the certificate MAYBE. Strict Trs: { from(X) -> cons(X, from(s(X))) , sel(s(N), cons(X, XS)) -> sel(N, XS) , sel(0(), cons(X, XS)) -> X , minus(X, 0()) -> 0() , minus(s(X), s(Y)) -> minus(X, Y) , quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) , quot(0(), s(Y)) -> 0() , zWquot(XS, nil()) -> nil() , zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), zWquot(XS, YS)) , zWquot(nil(), XS) -> nil() } Obligation: innermost runtime complexity Answer: MAYBE We add following weak dependency pairs: Strict DPs: { from^#(X) -> c_1(from^#(s(X))) , sel^#(s(N), cons(X, XS)) -> c_2(sel^#(N, XS)) , sel^#(0(), cons(X, XS)) -> c_3() , minus^#(X, 0()) -> c_4() , minus^#(s(X), s(Y)) -> c_5(minus^#(X, Y)) , quot^#(s(X), s(Y)) -> c_6(quot^#(minus(X, Y), s(Y))) , quot^#(0(), s(Y)) -> c_7() , zWquot^#(XS, nil()) -> c_8() , zWquot^#(cons(X, XS), cons(Y, YS)) -> c_9(quot^#(X, Y), zWquot^#(XS, YS)) , zWquot^#(nil(), XS) -> c_10() } and mark the set of starting terms. We are left with following problem, upon which TcT provides the certificate MAYBE. Strict DPs: { from^#(X) -> c_1(from^#(s(X))) , sel^#(s(N), cons(X, XS)) -> c_2(sel^#(N, XS)) , sel^#(0(), cons(X, XS)) -> c_3() , minus^#(X, 0()) -> c_4() , minus^#(s(X), s(Y)) -> c_5(minus^#(X, Y)) , quot^#(s(X), s(Y)) -> c_6(quot^#(minus(X, Y), s(Y))) , quot^#(0(), s(Y)) -> c_7() , zWquot^#(XS, nil()) -> c_8() , zWquot^#(cons(X, XS), cons(Y, YS)) -> c_9(quot^#(X, Y), zWquot^#(XS, YS)) , zWquot^#(nil(), XS) -> c_10() } Strict Trs: { from(X) -> cons(X, from(s(X))) , sel(s(N), cons(X, XS)) -> sel(N, XS) , sel(0(), cons(X, XS)) -> X , minus(X, 0()) -> 0() , minus(s(X), s(Y)) -> minus(X, Y) , quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) , quot(0(), s(Y)) -> 0() , zWquot(XS, nil()) -> nil() , zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), zWquot(XS, YS)) , zWquot(nil(), XS) -> nil() } Obligation: innermost runtime complexity Answer: MAYBE We replace rewrite rules by usable rules: Strict Usable Rules: { minus(X, 0()) -> 0() , minus(s(X), s(Y)) -> minus(X, Y) } We are left with following problem, upon which TcT provides the certificate MAYBE. Strict DPs: { from^#(X) -> c_1(from^#(s(X))) , sel^#(s(N), cons(X, XS)) -> c_2(sel^#(N, XS)) , sel^#(0(), cons(X, XS)) -> c_3() , minus^#(X, 0()) -> c_4() , minus^#(s(X), s(Y)) -> c_5(minus^#(X, Y)) , quot^#(s(X), s(Y)) -> c_6(quot^#(minus(X, Y), s(Y))) , quot^#(0(), s(Y)) -> c_7() , zWquot^#(XS, nil()) -> c_8() , zWquot^#(cons(X, XS), cons(Y, YS)) -> c_9(quot^#(X, Y), zWquot^#(XS, YS)) , zWquot^#(nil(), XS) -> c_10() } Strict Trs: { minus(X, 0()) -> 0() , minus(s(X), s(Y)) -> minus(X, Y) } Obligation: innermost runtime complexity Answer: MAYBE The weightgap principle applies (using the following constant growth matrix-interpretation) The following argument positions are usable: Uargs(c_1) = {1}, Uargs(c_2) = {1}, Uargs(c_5) = {1}, Uargs(quot^#) = {1}, Uargs(c_6) = {1}, Uargs(c_9) = {1, 2} TcT has computed following constructor-restricted matrix interpretation. [cons](x1, x2) = [1] x1 + [1] x2 + [1] [s](x1) = [1] x1 + [2] [0] = [0] [minus](x1, x2) = [1] x1 + [2] [nil] = [2] [from^#](x1) = [1] x1 + [1] [c_1](x1) = [1] x1 + [1] [sel^#](x1, x2) = [2] x1 + [2] x2 + [1] [c_2](x1) = [1] x1 + [1] [c_3] = [1] [minus^#](x1, x2) = [1] x1 + [1] x2 + [2] [c_4] = [1] [c_5](x1) = [1] x1 + [1] [quot^#](x1, x2) = [2] x1 + [0] [c_6](x1) = [1] x1 + [2] [c_7] = [1] [zWquot^#](x1, x2) = [2] x1 + [2] x2 + [2] [c_8] = [1] [c_9](x1, x2) = [1] x1 + [1] x2 + [1] [c_10] = [1] This order satisfies following ordering constraints: [minus(X, 0())] = [1] X + [2] > [0] = [0()] [minus(s(X), s(Y))] = [1] X + [4] > [1] X + [2] = [minus(X, Y)] Further, it can be verified that all rules not oriented are covered by the weightgap condition. We are left with following problem, upon which TcT provides the certificate MAYBE. Strict DPs: { from^#(X) -> c_1(from^#(s(X))) , quot^#(s(X), s(Y)) -> c_6(quot^#(minus(X, Y), s(Y))) , quot^#(0(), s(Y)) -> c_7() } Weak DPs: { sel^#(s(N), cons(X, XS)) -> c_2(sel^#(N, XS)) , sel^#(0(), cons(X, XS)) -> c_3() , minus^#(X, 0()) -> c_4() , minus^#(s(X), s(Y)) -> c_5(minus^#(X, Y)) , zWquot^#(XS, nil()) -> c_8() , zWquot^#(cons(X, XS), cons(Y, YS)) -> c_9(quot^#(X, Y), zWquot^#(XS, YS)) , zWquot^#(nil(), XS) -> c_10() } Weak Trs: { minus(X, 0()) -> 0() , minus(s(X), s(Y)) -> minus(X, Y) } Obligation: innermost runtime complexity Answer: MAYBE The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { sel^#(s(N), cons(X, XS)) -> c_2(sel^#(N, XS)) , sel^#(0(), cons(X, XS)) -> c_3() , minus^#(X, 0()) -> c_4() , minus^#(s(X), s(Y)) -> c_5(minus^#(X, Y)) , zWquot^#(XS, nil()) -> c_8() , zWquot^#(nil(), XS) -> c_10() } We are left with following problem, upon which TcT provides the certificate MAYBE. Strict DPs: { from^#(X) -> c_1(from^#(s(X))) , quot^#(s(X), s(Y)) -> c_6(quot^#(minus(X, Y), s(Y))) , quot^#(0(), s(Y)) -> c_7() } Weak DPs: { zWquot^#(cons(X, XS), cons(Y, YS)) -> c_9(quot^#(X, Y), zWquot^#(XS, YS)) } Weak Trs: { minus(X, 0()) -> 0() , minus(s(X), s(Y)) -> minus(X, Y) } Obligation: innermost runtime complexity Answer: MAYBE The input cannot be shown compatible Arrrr..