MAYBE We are left with following problem, upon which TcT provides the certificate MAYBE. Strict Trs: { not(tt()) -> ff() , not(ff()) -> tt() , or(tt(), x) -> tt() , or(ff(), x) -> x , eq(0(), 0()) -> tt() , eq(0(), s(y)) -> ff() , eq(s(x), 0()) -> ff() , eq(s(x), s(y)) -> eq(x, y) , main(phi) -> ver(phi, nil()) , ver(Var(x), t()) -> in(x, t()) , ver(Or(phi, psi), t()) -> or(ver(phi, t()), ver(psi, t())) , ver(Not(phi), t()) -> not(ver(phi, t())) , ver(Exists(n, phi), t()) -> or(ver(phi, cons(n, t())), ver(phi, t())) , in(x, nil()) -> ff() , in(x, cons(a, l)) -> or(eq(x, a), in(x, l)) } Obligation: innermost runtime complexity Answer: MAYBE We add following dependency tuples: Strict DPs: { not^#(tt()) -> c_1() , not^#(ff()) -> c_2() , or^#(tt(), x) -> c_3() , or^#(ff(), x) -> c_4() , eq^#(0(), 0()) -> c_5() , eq^#(0(), s(y)) -> c_6() , eq^#(s(x), 0()) -> c_7() , eq^#(s(x), s(y)) -> c_8(eq^#(x, y)) , main^#(phi) -> c_9(ver^#(phi, nil())) , ver^#(Var(x), t()) -> c_10(in^#(x, t())) , ver^#(Or(phi, psi), t()) -> c_11(or^#(ver(phi, t()), ver(psi, t())), ver^#(phi, t()), ver^#(psi, t())) , ver^#(Not(phi), t()) -> c_12(not^#(ver(phi, t())), ver^#(phi, t())) , ver^#(Exists(n, phi), t()) -> c_13(or^#(ver(phi, cons(n, t())), ver(phi, t())), ver^#(phi, cons(n, t())), ver^#(phi, t())) , in^#(x, nil()) -> c_14() , in^#(x, cons(a, l)) -> c_15(or^#(eq(x, a), in(x, l)), eq^#(x, a), in^#(x, l)) } and mark the set of starting terms. We are left with following problem, upon which TcT provides the certificate MAYBE. Strict DPs: { not^#(tt()) -> c_1() , not^#(ff()) -> c_2() , or^#(tt(), x) -> c_3() , or^#(ff(), x) -> c_4() , eq^#(0(), 0()) -> c_5() , eq^#(0(), s(y)) -> c_6() , eq^#(s(x), 0()) -> c_7() , eq^#(s(x), s(y)) -> c_8(eq^#(x, y)) , main^#(phi) -> c_9(ver^#(phi, nil())) , ver^#(Var(x), t()) -> c_10(in^#(x, t())) , ver^#(Or(phi, psi), t()) -> c_11(or^#(ver(phi, t()), ver(psi, t())), ver^#(phi, t()), ver^#(psi, t())) , ver^#(Not(phi), t()) -> c_12(not^#(ver(phi, t())), ver^#(phi, t())) , ver^#(Exists(n, phi), t()) -> c_13(or^#(ver(phi, cons(n, t())), ver(phi, t())), ver^#(phi, cons(n, t())), ver^#(phi, t())) , in^#(x, nil()) -> c_14() , in^#(x, cons(a, l)) -> c_15(or^#(eq(x, a), in(x, l)), eq^#(x, a), in^#(x, l)) } Weak Trs: { not(tt()) -> ff() , not(ff()) -> tt() , or(tt(), x) -> tt() , or(ff(), x) -> x , eq(0(), 0()) -> tt() , eq(0(), s(y)) -> ff() , eq(s(x), 0()) -> ff() , eq(s(x), s(y)) -> eq(x, y) , main(phi) -> ver(phi, nil()) , ver(Var(x), t()) -> in(x, t()) , ver(Or(phi, psi), t()) -> or(ver(phi, t()), ver(psi, t())) , ver(Not(phi), t()) -> not(ver(phi, t())) , ver(Exists(n, phi), t()) -> or(ver(phi, cons(n, t())), ver(phi, t())) , in(x, nil()) -> ff() , in(x, cons(a, l)) -> or(eq(x, a), in(x, l)) } Obligation: innermost runtime complexity Answer: MAYBE We estimate the number of application of {1,2,3,4,5,6,7,9,10,14} by applications of Pre({1,2,3,4,5,6,7,9,10,14}) = {8,11,12,13,15}. Here rules are labeled as follows: DPs: { 1: not^#(tt()) -> c_1() , 2: not^#(ff()) -> c_2() , 3: or^#(tt(), x) -> c_3() , 4: or^#(ff(), x) -> c_4() , 5: eq^#(0(), 0()) -> c_5() , 6: eq^#(0(), s(y)) -> c_6() , 7: eq^#(s(x), 0()) -> c_7() , 8: eq^#(s(x), s(y)) -> c_8(eq^#(x, y)) , 9: main^#(phi) -> c_9(ver^#(phi, nil())) , 10: ver^#(Var(x), t()) -> c_10(in^#(x, t())) , 11: ver^#(Or(phi, psi), t()) -> c_11(or^#(ver(phi, t()), ver(psi, t())), ver^#(phi, t()), ver^#(psi, t())) , 12: ver^#(Not(phi), t()) -> c_12(not^#(ver(phi, t())), ver^#(phi, t())) , 13: ver^#(Exists(n, phi), t()) -> c_13(or^#(ver(phi, cons(n, t())), ver(phi, t())), ver^#(phi, cons(n, t())), ver^#(phi, t())) , 14: in^#(x, nil()) -> c_14() , 15: in^#(x, cons(a, l)) -> c_15(or^#(eq(x, a), in(x, l)), eq^#(x, a), in^#(x, l)) } We are left with following problem, upon which TcT provides the certificate MAYBE. Strict DPs: { eq^#(s(x), s(y)) -> c_8(eq^#(x, y)) , ver^#(Or(phi, psi), t()) -> c_11(or^#(ver(phi, t()), ver(psi, t())), ver^#(phi, t()), ver^#(psi, t())) , ver^#(Not(phi), t()) -> c_12(not^#(ver(phi, t())), ver^#(phi, t())) , ver^#(Exists(n, phi), t()) -> c_13(or^#(ver(phi, cons(n, t())), ver(phi, t())), ver^#(phi, cons(n, t())), ver^#(phi, t())) , in^#(x, cons(a, l)) -> c_15(or^#(eq(x, a), in(x, l)), eq^#(x, a), in^#(x, l)) } Weak DPs: { not^#(tt()) -> c_1() , not^#(ff()) -> c_2() , or^#(tt(), x) -> c_3() , or^#(ff(), x) -> c_4() , eq^#(0(), 0()) -> c_5() , eq^#(0(), s(y)) -> c_6() , eq^#(s(x), 0()) -> c_7() , main^#(phi) -> c_9(ver^#(phi, nil())) , ver^#(Var(x), t()) -> c_10(in^#(x, t())) , in^#(x, nil()) -> c_14() } Weak Trs: { not(tt()) -> ff() , not(ff()) -> tt() , or(tt(), x) -> tt() , or(ff(), x) -> x , eq(0(), 0()) -> tt() , eq(0(), s(y)) -> ff() , eq(s(x), 0()) -> ff() , eq(s(x), s(y)) -> eq(x, y) , main(phi) -> ver(phi, nil()) , ver(Var(x), t()) -> in(x, t()) , ver(Or(phi, psi), t()) -> or(ver(phi, t()), ver(psi, t())) , ver(Not(phi), t()) -> not(ver(phi, t())) , ver(Exists(n, phi), t()) -> or(ver(phi, cons(n, t())), ver(phi, t())) , in(x, nil()) -> ff() , in(x, cons(a, l)) -> or(eq(x, a), in(x, l)) } Obligation: innermost runtime complexity Answer: MAYBE The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { not^#(tt()) -> c_1() , not^#(ff()) -> c_2() , or^#(tt(), x) -> c_3() , or^#(ff(), x) -> c_4() , eq^#(0(), 0()) -> c_5() , eq^#(0(), s(y)) -> c_6() , eq^#(s(x), 0()) -> c_7() , main^#(phi) -> c_9(ver^#(phi, nil())) , ver^#(Var(x), t()) -> c_10(in^#(x, t())) , in^#(x, nil()) -> c_14() } We are left with following problem, upon which TcT provides the certificate MAYBE. Strict DPs: { eq^#(s(x), s(y)) -> c_8(eq^#(x, y)) , ver^#(Or(phi, psi), t()) -> c_11(or^#(ver(phi, t()), ver(psi, t())), ver^#(phi, t()), ver^#(psi, t())) , ver^#(Not(phi), t()) -> c_12(not^#(ver(phi, t())), ver^#(phi, t())) , ver^#(Exists(n, phi), t()) -> c_13(or^#(ver(phi, cons(n, t())), ver(phi, t())), ver^#(phi, cons(n, t())), ver^#(phi, t())) , in^#(x, cons(a, l)) -> c_15(or^#(eq(x, a), in(x, l)), eq^#(x, a), in^#(x, l)) } Weak Trs: { not(tt()) -> ff() , not(ff()) -> tt() , or(tt(), x) -> tt() , or(ff(), x) -> x , eq(0(), 0()) -> tt() , eq(0(), s(y)) -> ff() , eq(s(x), 0()) -> ff() , eq(s(x), s(y)) -> eq(x, y) , main(phi) -> ver(phi, nil()) , ver(Var(x), t()) -> in(x, t()) , ver(Or(phi, psi), t()) -> or(ver(phi, t()), ver(psi, t())) , ver(Not(phi), t()) -> not(ver(phi, t())) , ver(Exists(n, phi), t()) -> or(ver(phi, cons(n, t())), ver(phi, t())) , in(x, nil()) -> ff() , in(x, cons(a, l)) -> or(eq(x, a), in(x, l)) } Obligation: innermost runtime complexity Answer: MAYBE Due to missing edges in the dependency-graph, the right-hand sides of following rules could be simplified: { ver^#(Or(phi, psi), t()) -> c_11(or^#(ver(phi, t()), ver(psi, t())), ver^#(phi, t()), ver^#(psi, t())) , ver^#(Not(phi), t()) -> c_12(not^#(ver(phi, t())), ver^#(phi, t())) , ver^#(Exists(n, phi), t()) -> c_13(or^#(ver(phi, cons(n, t())), ver(phi, t())), ver^#(phi, cons(n, t())), ver^#(phi, t())) , in^#(x, cons(a, l)) -> c_15(or^#(eq(x, a), in(x, l)), eq^#(x, a), in^#(x, l)) } We are left with following problem, upon which TcT provides the certificate MAYBE. Strict DPs: { eq^#(s(x), s(y)) -> c_1(eq^#(x, y)) , ver^#(Or(phi, psi), t()) -> c_2(ver^#(phi, t()), ver^#(psi, t())) , ver^#(Not(phi), t()) -> c_3(ver^#(phi, t())) , ver^#(Exists(n, phi), t()) -> c_4(ver^#(phi, t())) , in^#(x, cons(a, l)) -> c_5(eq^#(x, a), in^#(x, l)) } Weak Trs: { not(tt()) -> ff() , not(ff()) -> tt() , or(tt(), x) -> tt() , or(ff(), x) -> x , eq(0(), 0()) -> tt() , eq(0(), s(y)) -> ff() , eq(s(x), 0()) -> ff() , eq(s(x), s(y)) -> eq(x, y) , main(phi) -> ver(phi, nil()) , ver(Var(x), t()) -> in(x, t()) , ver(Or(phi, psi), t()) -> or(ver(phi, t()), ver(psi, t())) , ver(Not(phi), t()) -> not(ver(phi, t())) , ver(Exists(n, phi), t()) -> or(ver(phi, cons(n, t())), ver(phi, t())) , in(x, nil()) -> ff() , in(x, cons(a, l)) -> or(eq(x, a), in(x, l)) } Obligation: innermost runtime complexity Answer: MAYBE No rule is usable, rules are removed from the input problem. We are left with following problem, upon which TcT provides the certificate MAYBE. Strict DPs: { eq^#(s(x), s(y)) -> c_1(eq^#(x, y)) , ver^#(Or(phi, psi), t()) -> c_2(ver^#(phi, t()), ver^#(psi, t())) , ver^#(Not(phi), t()) -> c_3(ver^#(phi, t())) , ver^#(Exists(n, phi), t()) -> c_4(ver^#(phi, t())) , in^#(x, cons(a, l)) -> c_5(eq^#(x, a), in^#(x, l)) } Obligation: innermost runtime complexity Answer: MAYBE The input cannot be shown compatible Arrrr..