YES(O(1),O(n^1)) We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict Trs: { from(X) -> cons(X, n__from(s(X))) , from(X) -> n__from(X) , sel(s(X), cons(Y, Z)) -> sel(X, activate(Z)) , sel(0(), cons(X, Y)) -> X , activate(X) -> X , activate(n__from(X)) -> from(X) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) We add following weak dependency pairs: Strict DPs: { from^#(X) -> c_1() , from^#(X) -> c_2() , sel^#(s(X), cons(Y, Z)) -> c_3(sel^#(X, activate(Z))) , sel^#(0(), cons(X, Y)) -> c_4() , activate^#(X) -> c_5() , activate^#(n__from(X)) -> c_6(from^#(X)) } and mark the set of starting terms. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { from^#(X) -> c_1() , from^#(X) -> c_2() , sel^#(s(X), cons(Y, Z)) -> c_3(sel^#(X, activate(Z))) , sel^#(0(), cons(X, Y)) -> c_4() , activate^#(X) -> c_5() , activate^#(n__from(X)) -> c_6(from^#(X)) } Strict Trs: { from(X) -> cons(X, n__from(s(X))) , from(X) -> n__from(X) , sel(s(X), cons(Y, Z)) -> sel(X, activate(Z)) , sel(0(), cons(X, Y)) -> X , activate(X) -> X , activate(n__from(X)) -> from(X) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) We replace rewrite rules by usable rules: Strict Usable Rules: { from(X) -> cons(X, n__from(s(X))) , from(X) -> n__from(X) , activate(X) -> X , activate(n__from(X)) -> from(X) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { from^#(X) -> c_1() , from^#(X) -> c_2() , sel^#(s(X), cons(Y, Z)) -> c_3(sel^#(X, activate(Z))) , sel^#(0(), cons(X, Y)) -> c_4() , activate^#(X) -> c_5() , activate^#(n__from(X)) -> c_6(from^#(X)) } Strict Trs: { from(X) -> cons(X, n__from(s(X))) , from(X) -> n__from(X) , activate(X) -> X , activate(n__from(X)) -> from(X) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) The weightgap principle applies (using the following constant growth matrix-interpretation) The following argument positions are usable: Uargs(sel^#) = {2}, Uargs(c_3) = {1}, Uargs(c_6) = {1} TcT has computed following constructor-restricted matrix interpretation. [from](x1) = [2] [cons](x1, x2) = [1] x2 + [0] [n__from](x1) = [1] [s](x1) = [1] x1 + [1] [0] = [1] [activate](x1) = [1] x1 + [2] [from^#](x1) = [1] [c_1] = [0] [c_2] = [0] [sel^#](x1, x2) = [2] x1 + [1] x2 + [2] [c_3](x1) = [1] x1 + [2] [c_4] = [1] [activate^#](x1) = [2] x1 + [2] [c_5] = [1] [c_6](x1) = [1] x1 + [2] This order satisfies following ordering constraints: [from(X)] = [2] > [1] = [cons(X, n__from(s(X)))] [from(X)] = [2] > [1] = [n__from(X)] [activate(X)] = [1] X + [2] > [1] X + [0] = [X] [activate(n__from(X))] = [3] > [2] = [from(X)] Further, it can be verified that all rules not oriented are covered by the weightgap condition. We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict DPs: { sel^#(s(X), cons(Y, Z)) -> c_3(sel^#(X, activate(Z))) } Weak DPs: { from^#(X) -> c_1() , from^#(X) -> c_2() , sel^#(0(), cons(X, Y)) -> c_4() , activate^#(X) -> c_5() , activate^#(n__from(X)) -> c_6(from^#(X)) } Weak Trs: { from(X) -> cons(X, n__from(s(X))) , from(X) -> n__from(X) , activate(X) -> X , activate(n__from(X)) -> from(X) } Obligation: innermost runtime complexity Answer: YES(?,O(n^1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { from^#(X) -> c_1() , from^#(X) -> c_2() , sel^#(0(), cons(X, Y)) -> c_4() , activate^#(X) -> c_5() , activate^#(n__from(X)) -> c_6(from^#(X)) } We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict DPs: { sel^#(s(X), cons(Y, Z)) -> c_3(sel^#(X, activate(Z))) } Weak Trs: { from(X) -> cons(X, n__from(s(X))) , from(X) -> n__from(X) , activate(X) -> X , activate(n__from(X)) -> from(X) } Obligation: innermost runtime complexity Answer: YES(?,O(n^1)) The input was oriented with the instance of 'Small Polynomial Path Order (PS)' as induced by the safe mapping safe(from) = {}, safe(cons) = {1, 2}, safe(n__from) = {1}, safe(s) = {1}, safe(activate) = {}, safe(sel^#) = {2}, safe(c_3) = {} and precedence from ~ activate, from ~ sel^#, activate ~ sel^# . Following symbols are considered recursive: {from, activate, sel^#} The recursion depth is 1. Further, following argument filtering is employed: pi(from) = [], pi(cons) = [], pi(n__from) = [], pi(s) = [1], pi(activate) = [], pi(sel^#) = [1], pi(c_3) = [1] Usable defined function symbols are a subset of: {sel^#} For your convenience, here are the satisfied ordering constraints: pi(sel^#(s(X), cons(Y, Z))) = sel^#(s(; X);) > c_3(sel^#(X;);) = pi(c_3(sel^#(X, activate(Z)))) Hurray, we answered YES(O(1),O(n^1))