MAYBE We are left with following problem, upon which TcT provides the certificate MAYBE. Strict Trs: { f(X) -> cons(X, n__f(g(X))) , f(X) -> n__f(X) , g(0()) -> s(0()) , g(s(X)) -> s(s(g(X))) , sel(0(), cons(X, Y)) -> X , sel(s(X), cons(Y, Z)) -> sel(X, activate(Z)) , activate(X) -> X , activate(n__f(X)) -> f(X) } Obligation: innermost runtime complexity Answer: MAYBE We add following dependency tuples: Strict DPs: { f^#(X) -> c_1(g^#(X)) , f^#(X) -> c_2() , g^#(0()) -> c_3() , g^#(s(X)) -> c_4(g^#(X)) , sel^#(0(), cons(X, Y)) -> c_5() , sel^#(s(X), cons(Y, Z)) -> c_6(sel^#(X, activate(Z)), activate^#(Z)) , activate^#(X) -> c_7() , activate^#(n__f(X)) -> c_8(f^#(X)) } and mark the set of starting terms. We are left with following problem, upon which TcT provides the certificate MAYBE. Strict DPs: { f^#(X) -> c_1(g^#(X)) , f^#(X) -> c_2() , g^#(0()) -> c_3() , g^#(s(X)) -> c_4(g^#(X)) , sel^#(0(), cons(X, Y)) -> c_5() , sel^#(s(X), cons(Y, Z)) -> c_6(sel^#(X, activate(Z)), activate^#(Z)) , activate^#(X) -> c_7() , activate^#(n__f(X)) -> c_8(f^#(X)) } Weak Trs: { f(X) -> cons(X, n__f(g(X))) , f(X) -> n__f(X) , g(0()) -> s(0()) , g(s(X)) -> s(s(g(X))) , sel(0(), cons(X, Y)) -> X , sel(s(X), cons(Y, Z)) -> sel(X, activate(Z)) , activate(X) -> X , activate(n__f(X)) -> f(X) } Obligation: innermost runtime complexity Answer: MAYBE We estimate the number of application of {2,3,5,7} by applications of Pre({2,3,5,7}) = {1,4,6,8}. Here rules are labeled as follows: DPs: { 1: f^#(X) -> c_1(g^#(X)) , 2: f^#(X) -> c_2() , 3: g^#(0()) -> c_3() , 4: g^#(s(X)) -> c_4(g^#(X)) , 5: sel^#(0(), cons(X, Y)) -> c_5() , 6: sel^#(s(X), cons(Y, Z)) -> c_6(sel^#(X, activate(Z)), activate^#(Z)) , 7: activate^#(X) -> c_7() , 8: activate^#(n__f(X)) -> c_8(f^#(X)) } We are left with following problem, upon which TcT provides the certificate MAYBE. Strict DPs: { f^#(X) -> c_1(g^#(X)) , g^#(s(X)) -> c_4(g^#(X)) , sel^#(s(X), cons(Y, Z)) -> c_6(sel^#(X, activate(Z)), activate^#(Z)) , activate^#(n__f(X)) -> c_8(f^#(X)) } Weak DPs: { f^#(X) -> c_2() , g^#(0()) -> c_3() , sel^#(0(), cons(X, Y)) -> c_5() , activate^#(X) -> c_7() } Weak Trs: { f(X) -> cons(X, n__f(g(X))) , f(X) -> n__f(X) , g(0()) -> s(0()) , g(s(X)) -> s(s(g(X))) , sel(0(), cons(X, Y)) -> X , sel(s(X), cons(Y, Z)) -> sel(X, activate(Z)) , activate(X) -> X , activate(n__f(X)) -> f(X) } Obligation: innermost runtime complexity Answer: MAYBE The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { f^#(X) -> c_2() , g^#(0()) -> c_3() , sel^#(0(), cons(X, Y)) -> c_5() , activate^#(X) -> c_7() } We are left with following problem, upon which TcT provides the certificate MAYBE. Strict DPs: { f^#(X) -> c_1(g^#(X)) , g^#(s(X)) -> c_4(g^#(X)) , sel^#(s(X), cons(Y, Z)) -> c_6(sel^#(X, activate(Z)), activate^#(Z)) , activate^#(n__f(X)) -> c_8(f^#(X)) } Weak Trs: { f(X) -> cons(X, n__f(g(X))) , f(X) -> n__f(X) , g(0()) -> s(0()) , g(s(X)) -> s(s(g(X))) , sel(0(), cons(X, Y)) -> X , sel(s(X), cons(Y, Z)) -> sel(X, activate(Z)) , activate(X) -> X , activate(n__f(X)) -> f(X) } Obligation: innermost runtime complexity Answer: MAYBE We replace rewrite rules by usable rules: Weak Usable Rules: { f(X) -> cons(X, n__f(g(X))) , f(X) -> n__f(X) , g(0()) -> s(0()) , g(s(X)) -> s(s(g(X))) , activate(X) -> X , activate(n__f(X)) -> f(X) } We are left with following problem, upon which TcT provides the certificate MAYBE. Strict DPs: { f^#(X) -> c_1(g^#(X)) , g^#(s(X)) -> c_4(g^#(X)) , sel^#(s(X), cons(Y, Z)) -> c_6(sel^#(X, activate(Z)), activate^#(Z)) , activate^#(n__f(X)) -> c_8(f^#(X)) } Weak Trs: { f(X) -> cons(X, n__f(g(X))) , f(X) -> n__f(X) , g(0()) -> s(0()) , g(s(X)) -> s(s(g(X))) , activate(X) -> X , activate(n__f(X)) -> f(X) } Obligation: innermost runtime complexity Answer: MAYBE The input cannot be shown compatible Arrrr..