YES(O(1),O(n^1)) We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict Trs: { from(X) -> cons(X, n__from(s(X))) , from(X) -> n__from(X) , head(cons(X, XS)) -> X , 2nd(cons(X, XS)) -> head(activate(XS)) , activate(X) -> X , activate(n__from(X)) -> from(X) , activate(n__take(X1, X2)) -> take(X1, X2) , take(X1, X2) -> n__take(X1, X2) , take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS))) , take(0(), XS) -> nil() , sel(s(N), cons(X, XS)) -> sel(N, activate(XS)) , sel(0(), cons(X, XS)) -> X } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) We add following weak dependency pairs: Strict DPs: { from^#(X) -> c_1() , from^#(X) -> c_2() , head^#(cons(X, XS)) -> c_3() , 2nd^#(cons(X, XS)) -> c_4(head^#(activate(XS))) , activate^#(X) -> c_5() , activate^#(n__from(X)) -> c_6(from^#(X)) , activate^#(n__take(X1, X2)) -> c_7(take^#(X1, X2)) , take^#(X1, X2) -> c_8() , take^#(s(N), cons(X, XS)) -> c_9(activate^#(XS)) , take^#(0(), XS) -> c_10() , sel^#(s(N), cons(X, XS)) -> c_11(sel^#(N, activate(XS))) , sel^#(0(), cons(X, XS)) -> c_12() } and mark the set of starting terms. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { from^#(X) -> c_1() , from^#(X) -> c_2() , head^#(cons(X, XS)) -> c_3() , 2nd^#(cons(X, XS)) -> c_4(head^#(activate(XS))) , activate^#(X) -> c_5() , activate^#(n__from(X)) -> c_6(from^#(X)) , activate^#(n__take(X1, X2)) -> c_7(take^#(X1, X2)) , take^#(X1, X2) -> c_8() , take^#(s(N), cons(X, XS)) -> c_9(activate^#(XS)) , take^#(0(), XS) -> c_10() , sel^#(s(N), cons(X, XS)) -> c_11(sel^#(N, activate(XS))) , sel^#(0(), cons(X, XS)) -> c_12() } Strict Trs: { from(X) -> cons(X, n__from(s(X))) , from(X) -> n__from(X) , head(cons(X, XS)) -> X , 2nd(cons(X, XS)) -> head(activate(XS)) , activate(X) -> X , activate(n__from(X)) -> from(X) , activate(n__take(X1, X2)) -> take(X1, X2) , take(X1, X2) -> n__take(X1, X2) , take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS))) , take(0(), XS) -> nil() , sel(s(N), cons(X, XS)) -> sel(N, activate(XS)) , sel(0(), cons(X, XS)) -> X } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) We replace rewrite rules by usable rules: Strict Usable Rules: { from(X) -> cons(X, n__from(s(X))) , from(X) -> n__from(X) , activate(X) -> X , activate(n__from(X)) -> from(X) , activate(n__take(X1, X2)) -> take(X1, X2) , take(X1, X2) -> n__take(X1, X2) , take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS))) , take(0(), XS) -> nil() } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { from^#(X) -> c_1() , from^#(X) -> c_2() , head^#(cons(X, XS)) -> c_3() , 2nd^#(cons(X, XS)) -> c_4(head^#(activate(XS))) , activate^#(X) -> c_5() , activate^#(n__from(X)) -> c_6(from^#(X)) , activate^#(n__take(X1, X2)) -> c_7(take^#(X1, X2)) , take^#(X1, X2) -> c_8() , take^#(s(N), cons(X, XS)) -> c_9(activate^#(XS)) , take^#(0(), XS) -> c_10() , sel^#(s(N), cons(X, XS)) -> c_11(sel^#(N, activate(XS))) , sel^#(0(), cons(X, XS)) -> c_12() } Strict Trs: { from(X) -> cons(X, n__from(s(X))) , from(X) -> n__from(X) , activate(X) -> X , activate(n__from(X)) -> from(X) , activate(n__take(X1, X2)) -> take(X1, X2) , take(X1, X2) -> n__take(X1, X2) , take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS))) , take(0(), XS) -> nil() } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) The weightgap principle applies (using the following constant growth matrix-interpretation) The following argument positions are usable: Uargs(cons) = {2}, Uargs(n__take) = {2}, Uargs(head^#) = {1}, Uargs(c_4) = {1}, Uargs(c_6) = {1}, Uargs(c_7) = {1}, Uargs(c_9) = {1}, Uargs(sel^#) = {2}, Uargs(c_11) = {1} TcT has computed following constructor-restricted matrix interpretation. [from](x1) = [2] [cons](x1, x2) = [1] x2 + [0] [n__from](x1) = [1] [s](x1) = [1] x1 + [2] [activate](x1) = [1] x1 + [2] [take](x1, x2) = [1] x1 + [1] x2 + [2] [0] = [1] [nil] = [2] [n__take](x1, x2) = [1] x1 + [1] x2 + [1] [from^#](x1) = [1] [c_1] = [0] [c_2] = [0] [head^#](x1) = [1] x1 + [2] [c_3] = [1] [2nd^#](x1) = [1] x1 + [2] [c_4](x1) = [1] x1 + [2] [activate^#](x1) = [2] x1 + [2] [c_5] = [1] [c_6](x1) = [1] x1 + [2] [c_7](x1) = [1] x1 + [1] [take^#](x1, x2) = [1] x1 + [2] x2 + [2] [c_8] = [1] [c_9](x1) = [1] x1 + [1] [c_10] = [2] [sel^#](x1, x2) = [2] x1 + [2] x2 + [2] [c_11](x1) = [1] x1 + [1] [c_12] = [1] This order satisfies following ordering constraints: [from(X)] = [2] > [1] = [cons(X, n__from(s(X)))] [from(X)] = [2] > [1] = [n__from(X)] [activate(X)] = [1] X + [2] > [1] X + [0] = [X] [activate(n__from(X))] = [3] > [2] = [from(X)] [activate(n__take(X1, X2))] = [1] X1 + [1] X2 + [3] > [1] X1 + [1] X2 + [2] = [take(X1, X2)] [take(X1, X2)] = [1] X1 + [1] X2 + [2] > [1] X1 + [1] X2 + [1] = [n__take(X1, X2)] [take(s(N), cons(X, XS))] = [1] XS + [1] N + [4] > [1] XS + [1] N + [3] = [cons(X, n__take(N, activate(XS)))] [take(0(), XS)] = [1] XS + [3] > [2] = [nil()] Further, it can be verified that all rules not oriented are covered by the weightgap condition. We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict DPs: { 2nd^#(cons(X, XS)) -> c_4(head^#(activate(XS))) , sel^#(s(N), cons(X, XS)) -> c_11(sel^#(N, activate(XS))) } Weak DPs: { from^#(X) -> c_1() , from^#(X) -> c_2() , head^#(cons(X, XS)) -> c_3() , activate^#(X) -> c_5() , activate^#(n__from(X)) -> c_6(from^#(X)) , activate^#(n__take(X1, X2)) -> c_7(take^#(X1, X2)) , take^#(X1, X2) -> c_8() , take^#(s(N), cons(X, XS)) -> c_9(activate^#(XS)) , take^#(0(), XS) -> c_10() , sel^#(0(), cons(X, XS)) -> c_12() } Weak Trs: { from(X) -> cons(X, n__from(s(X))) , from(X) -> n__from(X) , activate(X) -> X , activate(n__from(X)) -> from(X) , activate(n__take(X1, X2)) -> take(X1, X2) , take(X1, X2) -> n__take(X1, X2) , take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS))) , take(0(), XS) -> nil() } Obligation: innermost runtime complexity Answer: YES(?,O(n^1)) We estimate the number of application of {1} by applications of Pre({1}) = {}. Here rules are labeled as follows: DPs: { 1: 2nd^#(cons(X, XS)) -> c_4(head^#(activate(XS))) , 2: sel^#(s(N), cons(X, XS)) -> c_11(sel^#(N, activate(XS))) , 3: from^#(X) -> c_1() , 4: from^#(X) -> c_2() , 5: head^#(cons(X, XS)) -> c_3() , 6: activate^#(X) -> c_5() , 7: activate^#(n__from(X)) -> c_6(from^#(X)) , 8: activate^#(n__take(X1, X2)) -> c_7(take^#(X1, X2)) , 9: take^#(X1, X2) -> c_8() , 10: take^#(s(N), cons(X, XS)) -> c_9(activate^#(XS)) , 11: take^#(0(), XS) -> c_10() , 12: sel^#(0(), cons(X, XS)) -> c_12() } We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict DPs: { sel^#(s(N), cons(X, XS)) -> c_11(sel^#(N, activate(XS))) } Weak DPs: { from^#(X) -> c_1() , from^#(X) -> c_2() , head^#(cons(X, XS)) -> c_3() , 2nd^#(cons(X, XS)) -> c_4(head^#(activate(XS))) , activate^#(X) -> c_5() , activate^#(n__from(X)) -> c_6(from^#(X)) , activate^#(n__take(X1, X2)) -> c_7(take^#(X1, X2)) , take^#(X1, X2) -> c_8() , take^#(s(N), cons(X, XS)) -> c_9(activate^#(XS)) , take^#(0(), XS) -> c_10() , sel^#(0(), cons(X, XS)) -> c_12() } Weak Trs: { from(X) -> cons(X, n__from(s(X))) , from(X) -> n__from(X) , activate(X) -> X , activate(n__from(X)) -> from(X) , activate(n__take(X1, X2)) -> take(X1, X2) , take(X1, X2) -> n__take(X1, X2) , take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS))) , take(0(), XS) -> nil() } Obligation: innermost runtime complexity Answer: YES(?,O(n^1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { from^#(X) -> c_1() , from^#(X) -> c_2() , head^#(cons(X, XS)) -> c_3() , 2nd^#(cons(X, XS)) -> c_4(head^#(activate(XS))) , activate^#(X) -> c_5() , activate^#(n__from(X)) -> c_6(from^#(X)) , activate^#(n__take(X1, X2)) -> c_7(take^#(X1, X2)) , take^#(X1, X2) -> c_8() , take^#(s(N), cons(X, XS)) -> c_9(activate^#(XS)) , take^#(0(), XS) -> c_10() , sel^#(0(), cons(X, XS)) -> c_12() } We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict DPs: { sel^#(s(N), cons(X, XS)) -> c_11(sel^#(N, activate(XS))) } Weak Trs: { from(X) -> cons(X, n__from(s(X))) , from(X) -> n__from(X) , activate(X) -> X , activate(n__from(X)) -> from(X) , activate(n__take(X1, X2)) -> take(X1, X2) , take(X1, X2) -> n__take(X1, X2) , take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS))) , take(0(), XS) -> nil() } Obligation: innermost runtime complexity Answer: YES(?,O(n^1)) The input was oriented with the instance of 'Small Polynomial Path Order (PS)' as induced by the safe mapping safe(from) = {}, safe(cons) = {1, 2}, safe(n__from) = {1}, safe(s) = {1}, safe(activate) = {}, safe(take) = {}, safe(0) = {}, safe(nil) = {}, safe(n__take) = {1, 2}, safe(sel^#) = {2}, safe(c_11) = {} and precedence from ~ activate, from ~ take, from ~ sel^#, activate ~ sel^#, take ~ sel^# . Following symbols are considered recursive: {from, activate, take, sel^#} The recursion depth is 1. Further, following argument filtering is employed: pi(from) = [], pi(cons) = [], pi(n__from) = [], pi(s) = [1], pi(activate) = [], pi(take) = [], pi(0) = [], pi(nil) = [], pi(n__take) = [1], pi(sel^#) = [1], pi(c_11) = [1] Usable defined function symbols are a subset of: {sel^#} For your convenience, here are the satisfied ordering constraints: pi(sel^#(s(N), cons(X, XS))) = sel^#(s(; N);) > c_11(sel^#(N;);) = pi(c_11(sel^#(N, activate(XS)))) Hurray, we answered YES(O(1),O(n^1))