YES(?,O(n^1)) We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict Trs: { f(X) -> g(n__h(n__f(X))) , f(X) -> n__f(X) , h(X) -> n__h(X) , activate(X) -> X , activate(n__h(X)) -> h(activate(X)) , activate(n__f(X)) -> f(activate(X)) } Obligation: innermost runtime complexity Answer: YES(?,O(n^1)) We add following dependency tuples: Strict DPs: { f^#(X) -> c_1() , f^#(X) -> c_2() , h^#(X) -> c_3() , activate^#(X) -> c_4() , activate^#(n__h(X)) -> c_5(h^#(activate(X)), activate^#(X)) , activate^#(n__f(X)) -> c_6(f^#(activate(X)), activate^#(X)) } and mark the set of starting terms. We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict DPs: { f^#(X) -> c_1() , f^#(X) -> c_2() , h^#(X) -> c_3() , activate^#(X) -> c_4() , activate^#(n__h(X)) -> c_5(h^#(activate(X)), activate^#(X)) , activate^#(n__f(X)) -> c_6(f^#(activate(X)), activate^#(X)) } Weak Trs: { f(X) -> g(n__h(n__f(X))) , f(X) -> n__f(X) , h(X) -> n__h(X) , activate(X) -> X , activate(n__h(X)) -> h(activate(X)) , activate(n__f(X)) -> f(activate(X)) } Obligation: innermost runtime complexity Answer: YES(?,O(n^1)) We estimate the number of application of {1,2,3,4} by applications of Pre({1,2,3,4}) = {5,6}. Here rules are labeled as follows: DPs: { 1: f^#(X) -> c_1() , 2: f^#(X) -> c_2() , 3: h^#(X) -> c_3() , 4: activate^#(X) -> c_4() , 5: activate^#(n__h(X)) -> c_5(h^#(activate(X)), activate^#(X)) , 6: activate^#(n__f(X)) -> c_6(f^#(activate(X)), activate^#(X)) } We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict DPs: { activate^#(n__h(X)) -> c_5(h^#(activate(X)), activate^#(X)) , activate^#(n__f(X)) -> c_6(f^#(activate(X)), activate^#(X)) } Weak DPs: { f^#(X) -> c_1() , f^#(X) -> c_2() , h^#(X) -> c_3() , activate^#(X) -> c_4() } Weak Trs: { f(X) -> g(n__h(n__f(X))) , f(X) -> n__f(X) , h(X) -> n__h(X) , activate(X) -> X , activate(n__h(X)) -> h(activate(X)) , activate(n__f(X)) -> f(activate(X)) } Obligation: innermost runtime complexity Answer: YES(?,O(n^1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { f^#(X) -> c_1() , f^#(X) -> c_2() , h^#(X) -> c_3() , activate^#(X) -> c_4() } We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict DPs: { activate^#(n__h(X)) -> c_5(h^#(activate(X)), activate^#(X)) , activate^#(n__f(X)) -> c_6(f^#(activate(X)), activate^#(X)) } Weak Trs: { f(X) -> g(n__h(n__f(X))) , f(X) -> n__f(X) , h(X) -> n__h(X) , activate(X) -> X , activate(n__h(X)) -> h(activate(X)) , activate(n__f(X)) -> f(activate(X)) } Obligation: innermost runtime complexity Answer: YES(?,O(n^1)) Due to missing edges in the dependency-graph, the right-hand sides of following rules could be simplified: { activate^#(n__h(X)) -> c_5(h^#(activate(X)), activate^#(X)) , activate^#(n__f(X)) -> c_6(f^#(activate(X)), activate^#(X)) } We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict DPs: { activate^#(n__h(X)) -> c_1(activate^#(X)) , activate^#(n__f(X)) -> c_2(activate^#(X)) } Weak Trs: { f(X) -> g(n__h(n__f(X))) , f(X) -> n__f(X) , h(X) -> n__h(X) , activate(X) -> X , activate(n__h(X)) -> h(activate(X)) , activate(n__f(X)) -> f(activate(X)) } Obligation: innermost runtime complexity Answer: YES(?,O(n^1)) No rule is usable, rules are removed from the input problem. We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict DPs: { activate^#(n__h(X)) -> c_1(activate^#(X)) , activate^#(n__f(X)) -> c_2(activate^#(X)) } Obligation: innermost runtime complexity Answer: YES(?,O(n^1)) The input was oriented with the instance of 'Small Polynomial Path Order (PS)' as induced by the safe mapping safe(n__h) = {1}, safe(n__f) = {1}, safe(activate^#) = {}, safe(c_1) = {}, safe(c_2) = {} and precedence empty . Following symbols are considered recursive: {activate^#} The recursion depth is 1. Further, following argument filtering is employed: pi(n__h) = [1], pi(n__f) = [1], pi(activate^#) = [1], pi(c_1) = [1], pi(c_2) = [1] Usable defined function symbols are a subset of: {activate^#} For your convenience, here are the satisfied ordering constraints: pi(activate^#(n__h(X))) = activate^#(n__h(; X);) > c_1(activate^#(X;);) = pi(c_1(activate^#(X))) pi(activate^#(n__f(X))) = activate^#(n__f(; X);) > c_2(activate^#(X;);) = pi(c_2(activate^#(X))) Hurray, we answered YES(?,O(n^1))