YES(?,O(n^1)) We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict Trs: { a__f(X) -> g(h(f(X))) , a__f(X) -> f(X) , mark(g(X)) -> g(X) , mark(h(X)) -> h(mark(X)) , mark(f(X)) -> a__f(mark(X)) } Obligation: innermost runtime complexity Answer: YES(?,O(n^1)) We add following dependency tuples: Strict DPs: { a__f^#(X) -> c_1() , a__f^#(X) -> c_2() , mark^#(g(X)) -> c_3() , mark^#(h(X)) -> c_4(mark^#(X)) , mark^#(f(X)) -> c_5(a__f^#(mark(X)), mark^#(X)) } and mark the set of starting terms. We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict DPs: { a__f^#(X) -> c_1() , a__f^#(X) -> c_2() , mark^#(g(X)) -> c_3() , mark^#(h(X)) -> c_4(mark^#(X)) , mark^#(f(X)) -> c_5(a__f^#(mark(X)), mark^#(X)) } Weak Trs: { a__f(X) -> g(h(f(X))) , a__f(X) -> f(X) , mark(g(X)) -> g(X) , mark(h(X)) -> h(mark(X)) , mark(f(X)) -> a__f(mark(X)) } Obligation: innermost runtime complexity Answer: YES(?,O(n^1)) We estimate the number of application of {1,2,3} by applications of Pre({1,2,3}) = {4,5}. Here rules are labeled as follows: DPs: { 1: a__f^#(X) -> c_1() , 2: a__f^#(X) -> c_2() , 3: mark^#(g(X)) -> c_3() , 4: mark^#(h(X)) -> c_4(mark^#(X)) , 5: mark^#(f(X)) -> c_5(a__f^#(mark(X)), mark^#(X)) } We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict DPs: { mark^#(h(X)) -> c_4(mark^#(X)) , mark^#(f(X)) -> c_5(a__f^#(mark(X)), mark^#(X)) } Weak DPs: { a__f^#(X) -> c_1() , a__f^#(X) -> c_2() , mark^#(g(X)) -> c_3() } Weak Trs: { a__f(X) -> g(h(f(X))) , a__f(X) -> f(X) , mark(g(X)) -> g(X) , mark(h(X)) -> h(mark(X)) , mark(f(X)) -> a__f(mark(X)) } Obligation: innermost runtime complexity Answer: YES(?,O(n^1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { a__f^#(X) -> c_1() , a__f^#(X) -> c_2() , mark^#(g(X)) -> c_3() } We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict DPs: { mark^#(h(X)) -> c_4(mark^#(X)) , mark^#(f(X)) -> c_5(a__f^#(mark(X)), mark^#(X)) } Weak Trs: { a__f(X) -> g(h(f(X))) , a__f(X) -> f(X) , mark(g(X)) -> g(X) , mark(h(X)) -> h(mark(X)) , mark(f(X)) -> a__f(mark(X)) } Obligation: innermost runtime complexity Answer: YES(?,O(n^1)) Due to missing edges in the dependency-graph, the right-hand sides of following rules could be simplified: { mark^#(f(X)) -> c_5(a__f^#(mark(X)), mark^#(X)) } We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict DPs: { mark^#(h(X)) -> c_1(mark^#(X)) , mark^#(f(X)) -> c_2(mark^#(X)) } Weak Trs: { a__f(X) -> g(h(f(X))) , a__f(X) -> f(X) , mark(g(X)) -> g(X) , mark(h(X)) -> h(mark(X)) , mark(f(X)) -> a__f(mark(X)) } Obligation: innermost runtime complexity Answer: YES(?,O(n^1)) No rule is usable, rules are removed from the input problem. We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict DPs: { mark^#(h(X)) -> c_1(mark^#(X)) , mark^#(f(X)) -> c_2(mark^#(X)) } Obligation: innermost runtime complexity Answer: YES(?,O(n^1)) The input was oriented with the instance of 'Small Polynomial Path Order (PS)' as induced by the safe mapping safe(h) = {1}, safe(f) = {1}, safe(mark^#) = {}, safe(c_1) = {}, safe(c_2) = {} and precedence empty . Following symbols are considered recursive: {mark^#} The recursion depth is 1. Further, following argument filtering is employed: pi(h) = [1], pi(f) = [1], pi(mark^#) = [1], pi(c_1) = [1], pi(c_2) = [1] Usable defined function symbols are a subset of: {mark^#} For your convenience, here are the satisfied ordering constraints: pi(mark^#(h(X))) = mark^#(h(; X);) > c_1(mark^#(X;);) = pi(c_1(mark^#(X))) pi(mark^#(f(X))) = mark^#(f(; X);) > c_2(mark^#(X;);) = pi(c_2(mark^#(X))) Hurray, we answered YES(?,O(n^1))