YES(?,O(n^2))
TRS:
 {
        f(g(h(a(), b()), c()), d()) ->
  if(e(), f(.(b(), g(h(a(), b()), c())), d()), f(c(), d'())),
  f(g(i(a(), b(), b'()), c()), d()) ->
  if(e(), f(.(b(), c()), d'()), f(.(b'(), c()), d'()))
 }
 DUP: We consider a non-duplicating system.
  Trs:
   {
          f(g(h(a(), b()), c()), d()) ->
    if(e(), f(.(b(), g(h(a(), b()), c())), d()), f(c(), d'())),
    f(g(i(a(), b(), b'()), c()), d()) ->
    if(e(), f(.(b(), c()), d'()), f(.(b'(), c()), d'()))
   }
  Matrix Interpretation:
   Interpretation class: triangular
         [2]
   [d] = [0]
   
         [0]
   [a] = [0]
   
       [X5]  [X3]  [X1]    [1 0][X5]   [1 0][X3]   [1 0][X1]   [0]
   [i]([X4], [X2], [X0]) = [0 0][X4] + [0 0][X2] + [0 0][X0] + [0]
   
          [0]
   [b'] = [0]
   
          [0]
   [d'] = [0]
   
         [0]
   [c] = [0]
   
         [0]
   [b] = [1]
   
       [X3]  [X1]    [1 0][X3]   [1 0][X1]   [0]
   [.]([X2], [X0]) = [0 0][X2] + [0 0][X0] + [0]
   
         [0]
   [e] = [0]
   
        [X5]  [X3]  [X1]    [1 0][X5]   [1 0][X3]   [1 0][X1]   [0]
   [if]([X4], [X2], [X0]) = [0 0][X4] + [0 0][X2] + [0 0][X0] + [0]
   
       [X3]  [X1]    [1 0][X3]   [1 0][X1]   [0]
   [h]([X2], [X0]) = [0 0][X2] + [0 1][X0] + [0]
   
       [X3]  [X1]    [1 0][X3]   [1 0][X1]   [0]
   [g]([X2], [X0]) = [0 1][X2] + [0 0][X0] + [2]
   
       [X3]  [X1]    [1 2][X3]   [1 0][X1]   [0]
   [f]([X2], [X0]) = [0 0][X2] + [0 0][X0] + [0]
   
   
   Qed