$\qquad$
Name:
Matr.-Nr.:

## Points:

Good luck!

## Big $\mathcal{O}$ notation

Which of the following functions are big $\mathcal{O}$ of which others? (Recall that we are only interested in functions $f: \mathbb{N} \rightarrow \mathbb{N}$. Hence when we write $f(n)$, we really mean $\max (\{\lceil f(n)\rceil, 0\})$.)
(a) $\quad h(n)= \begin{cases}n \cdot \log _{10}(n) & \text { if } n \text { is even } \\ \frac{n^{3}}{\log _{2}(n)} & \text { if } n \text { is odd }\end{cases}$

- $4711^{2 n}$
- $n^{n}$
- $n \cdot \log _{2}(n)$

Here the answer suffices in the form of a diagram:

(Meaning that $f_{1}(n)=\mathcal{O}\left(f_{2}(n)\right), f_{1}(n)=\mathcal{O}\left(f_{3}(n)\right), f_{2}(n)=\mathcal{O}\left(f_{4}(n)\right)$ and $f_{3}(n)=$ $\mathcal{O}\left(f_{4}(n)\right)$ and neither $f_{2}(n)=\mathcal{O}\left(f_{3}(n)\right)$ nor $f_{3}(n)=\mathcal{O}\left(f_{2}(n)\right)$.)
(b) Explain your answers to (a) convincingly.

## Turing Machines

Consider the following Turing machine $\mathrm{M}=(K, \Sigma, \delta, s)$ with $K=\left\{s, s_{a}, s_{b}, s_{c}, s_{d}, s_{e}\right.$, yes, no $\}$, $\Sigma=\{0,0 ̀, 0,1, \grave{1}, 1 ́, \triangleright, \sqcup\}$ and $\delta$ defined as follows:

| $p \in K$ | $\sigma \in \Sigma$ | $\delta_{M}(p, \sigma)$ |
| :---: | :---: | :---: |
| $s$ | $\triangleright$ | $\left(s_{a}, \triangleright, \rightarrow\right)$ |
| $s_{a}$ | 0 | $\left(s_{b}, 0, \rightarrow\right)$ |
| $s_{a}$ | 1 | $\left(s_{b}, \mathbf{1}, \rightarrow\right)$ |
| $s_{a}$ | 0 | $\left(s_{e}, 0, \leftarrow\right)$ |
| $s_{a}$ | 1 | $\left(s_{e}, 1, \leftarrow\right)$ |
| $s_{b}$ | 0 | $\left(s_{b}, 0, \rightarrow\right)$ |
| $s_{b}$ | 1 | $\left(s_{b}, 1, \rightarrow\right)$ |
| $s_{b}$ | $\sqcup$ | $\left(s_{c}, \sqcup, \leftarrow\right)$ |
| $s_{b}$ | 0 | $\left(s_{c}, \stackrel{0}{4}, \leftarrow\right)$ |
| $s_{b}$ | 1 | $\left(s_{c}, 1, \leftarrow\right)$ |
|  |  |  |


| $p \in K$ | $\sigma \in \Sigma$ | $\delta_{M}(p, \sigma)$ |
| :---: | :---: | :---: |
| $s_{c}$ | 0 | $\left(s_{d}, 0, \leftarrow\right)$ |
| $s_{c}$ | 1 | $\left(s_{d}, 1, \leftarrow\right)$ |
| $s_{c}$ | ò | (no, ${ }^{\text {, }}$ - ) |
| $s_{c}$ | i | (no, ì, -) |
| $s_{d}$ | 0 | $\left(s_{d}, 0, \leftarrow\right)$ |
| $s_{d}$ | 1 | $\left(s_{d}, 1, \leftarrow\right)$ |
| $s_{d}$ | ò | $\left(s_{a},{ }_{0}, \rightarrow\right)$ |
| $s_{d}$ | ì | $\left(s_{a}, 1, \rightarrow\right)$ |
| $s_{e}$ | ò | $\left(s_{e}, \stackrel{\text { o }}{ }, \leftarrow\right)$ |
| $s_{e}$ | ì | $\left(s_{e}, \grave{1}, \leftarrow\right)$ |
| $s_{e}$ | $\triangleright$ | (yes, $\triangleright,-$ ) |

(a) For arbitrary strings $x \in\{0,1\}^{*}$, what is $\mathrm{M}(x)$ ?
(b) Define the notion of space complexity of 1-string Turing machines formally and give an upper-bound on the space complexity of M .
(c) Explain informally how to extend M to decide the language $\mathrm{L}=\left\{w w \mid w \in\{0,1\}^{*}\right\}$.

## Complexity Classes

Consider the following tasks.
(a) Define the complexity class $\mathbf{N L}$ and state a language L such that $\mathrm{L} \in \mathbf{N L}$.
(b) Prove the following assertion: PSPACE $=$ NPSPACE. (If you use a theorem to prove this assertion, please give a brief explanation of how the theorem was proven or give the name of the proof method used.)

## Reductions and NP-completeness

Let $G=(V, E)$ be an undirected graph, $I \subseteq V$. Recall that $I$ is independent if for $i, j \in I$, $\{i, j\} \notin E$.

$$
\text { INDEPENDENT SET }=\left\{(G, K): \begin{array}{l}
\text { there exists an independent } \\
\text { set } I \text { for } G \text { with }|I|=K
\end{array}\right\}
$$

(a) Define a reduction $R$ from 3SAT to INDEPENDENT SET.
(b) Show that $\varphi \in 3$ SAT if and only if $R(\varphi) \in \operatorname{INDEPENDENT~SET.~}$
(c) Show that $R$ is logspace computable.
(d) Show that INDEPENDENT SET is NP-complete. (Under the assumption that (a)-(c) have been established.)

