[5]

[5]

Name: Matr.-Nr.: Points:

Good luck!

Big \mathcal{O} notation

Which of the following functions are big \mathcal{O} of which others? (Recall that we are only interested in functions $f \colon \mathbb{N} \to \mathbb{N}$. Hence when we write f(n), we really mean $\max(\{\lceil f(n) \rceil, 0\})$.)

a functions $f: \mathbb{N} \to \mathbb{N}$. Hence when we write f(n), we really mean $\max(\{\lceil f(n) \rceil, 0\})$.)

(a) $h(n) = \begin{cases} n \cdot \log_{10}(n) & \text{if } n \text{ is even} \\ \frac{n^3}{\log_2(n)} & \text{if } n \text{ is odd} \end{cases}$

- 4711²ⁿ
- *n*ⁿ
- $n \cdot \log_2(n)$

Here the answer suffices in the form of a diagram:

(Meaning that $f_1(n) = \mathcal{O}(f_2(n)), f_1(n) = \mathcal{O}(f_3(n)), f_2(n) = \mathcal{O}(f_4(n))$ and $f_3(n) = \mathcal{O}(f_4(n))$ and neither $f_2(n) = \mathcal{O}(f_3(n))$ nor $f_3(n) = \mathcal{O}(f_2(n))$.)

(b) Explain your answers to (a) convincingly.

Turing Machines

Consider the following Turing machine $M = (K, \Sigma, \delta, s)$ with $K = \{s, s_a, s_b, s_c, s_d, s_e, yes, no\},$ $\Sigma = \{0, 0, 0, 1, 1, 1, 0, \bot\}$ and δ defined as follows:

$p \in K$	$\sigma \in \Sigma$	$\delta_M(p,\sigma)$
s	\triangleright	$(s_a, \triangleright, \rightarrow)$
s_a	0	$(s_b,\grave{0}, ightarrow)$
s_a	1	$(s_b, \grave{1}, \rightarrow)$
s_a	Ó	$(s_e, \acute{0}, \leftarrow)$
s_a	ĺ	$(s_e, 1, \leftarrow)$
s_b	0	$(s_b, 0, o)$
s_b	1	$(s_b,1, ightarrow)$
s_b	Ц	$(s_c, \sqcup, \leftarrow)$
s_b	Ó	$(s_c, \acute{0}, \leftarrow)$
s_b	ĺ	$(s_c, \acute{1}, \leftarrow)$

$p \in K$	$\sigma \in \Sigma$	$\delta_M(p,\sigma)$
s_c	0	$(s_d, 0, \leftarrow)$
s_c	1	$(s_d, 1, \leftarrow)$
s_c	Ò	$(no,\grave{0},-)$
s_c	ì	$(no,\grave{1},-)$
s_d	0	$(s_d, 0, \leftarrow)$
s_d	1	$(s_d, 1, \leftarrow)$
s_d	Ò	$(s_a, \grave{0}, \rightarrow)$
s_d	Ì	$(s_a, \grave{1}, \rightarrow)$
s_e	Ò	$(s_e, \grave{0}, \leftarrow)$
s_e	ì	$(s_e, \grave{1}, \leftarrow)$
s_e	\triangleright	(yes, ⊳, −)

[5]

[4]

[4]

[5]

- (a) For arbitrary strings $x \in \{0, 1\}^*$, what is M(x)?
- (b) Define the notion of space complexity of 1-string Turing machines formally and give an upper-bound on the space complexity of M. [5]
- (c) Explain informally how to extend M to decide the language $L = \{ww \mid w \in \{0,1\}^*\}$. [4]

Complexity Classes

Consider the following tasks.

- (a) Define the complexity class NL and state a language L such that $L \in NL$.
- (b) Prove the following assertion: **PSPACE** = **NPSPACE**. (If you use a theorem to prove this assertion, please give a brief explanation of how the theorem was proven or give the name of the proof method used.)

Reductions and NP-completeness

Let G = (V, E) be an undirected graph, $I \subseteq V$. Recall that I is independent if for $i, j \in I$, $\{i, j\} \notin E$.

$$\label{eq:independent} \text{INDEPENDENT SET} = \left\{ (G,K) \colon \text{there exists an independent} \right. \\ \left. \text{set I for G with } |I| = K \right\}$$

- (a) Define a reduction R from 3SAT to INDEPENDENT SET.
- (b) Show that $\varphi \in 3SAT$ if and only if $R(\varphi) \in INDEPENDENT$ SET. [6]
- (c) Show that R is logspace computable. [3]
- (d) Show that INDEPENDENT SET is **NP**-complete. (Under the assumption that (a)–(c) have been established.) [4]