Name:	MatrNr.:	Points:

Good luck!

Big \mathcal{O} notation

Which of the following functions are big \mathcal{O} of which others? (Recall that we are only interested in functions $f: \mathbb{N} \to \mathbb{N}$. Hence when we write f(n), we really mean $\max(\{ [f(n)], 0 \})$.)

(a) $\bullet h(n) = \begin{cases} n \cdot \log_2(n) & \text{if } n \text{ is even} \\ \frac{n^3}{\log_2(n)} & \text{if } n \text{ is odd} \end{cases}$ $\bullet n^{\log_2(n)} \\\bullet n^{4711} \\\bullet n \cdot \sqrt{n} \end{cases}$

Here the answer suffices in the form of a diagram:

(Meaning that $f_1(n) = \mathcal{O}(f_2(n)), f_1(n) = \mathcal{O}(f_3(n)), f_2(n) = \mathcal{O}(f_4(n))$ and $f_3(n) = \mathcal{O}(f_4(n))$ and neither $f_2(n) = \mathcal{O}(f_3(n))$ nor $f_3(n) = \mathcal{O}(f_2(n)).$)

(b) Explain your answers to (a) convincingly.

[5]

[5]

Turing Machines

Consider the following Turing machine $\mathsf{M} = (K, \Sigma, \delta, s)$ with $K = \{s, s_1, s_2, s_3, s_4, s_5, yes, no\}, \Sigma = \{\mathsf{a}, \mathsf{a}, \mathsf{a}, \mathsf{b}, \mathsf{b},$

$p \in K$	$\sigma\in\Sigma$	$\delta_M(p,\sigma)$	$p \in K$	$\sigma \in \Sigma$	$\delta_M(p,\sigma)$
s	\triangleright	$(s_1, \triangleright, \rightarrow)$	s_3	а	$(s_4, \acute{a}, \leftarrow)$
s_1	а	$(s_2, \grave{a}, ightarrow)$	s_3	b	$(s_4, \acute{b}, \leftarrow)$
s_1	b	$(s_2, \mathbf{b}, \rightarrow)$	s_3	à	$(no, \grave{a}, -)$
s_1	á	$(s_5, {a}, \leftarrow)$	s_3	b	$(no, \dot{b}, -)$
s_1	b	$(s_5, \acute{b}, \leftarrow)$	s_4	а	(s_4, a, \leftarrow)
s_2	а	$(s_2, a, ightarrow)$	s_4	b	(s_4, b, \leftarrow)
s_2	b	(s_2, b, \rightarrow)	s_4	à	$(s_1, \grave{a}, \rightarrow)$
s_2	\Box	(s_3,\sqcup,\leftarrow)	s_4	b	$(s_1, \dot{b}, \rightarrow)$
s_2	á	$(s_3, \acute{a}, \leftarrow)$	s_5	à	$(s_5, \grave{a}, \leftarrow)$
s_2	b	$(s_3, \acute{b}, \leftarrow)$	s_5	b	$(s_5, \dot{b}, \leftarrow)$
			s_5	\triangleright	$(yes, \triangleright, -)$

- (a) For arbitrary strings $x \in \{a, b\}^*$, what is M(x)?
- (b) Define the notion of space complexity of 1-string Turing machines formally and give an upper-bound on the space complexity of M. [5]
- (c) Explain informally how to extend M to decide the language $L = \{ww \mid w \in \{a, b\}^*\}$. [4]

Complexity Classes

Consider the following tasks.

- (a) Define the complexity class \mathbf{P} and state a language L such that $L \in \mathbf{P}$. [4]
- (b) Prove or disprove **coPSPACE** = **NPSPACE**. (If you use a theorem to prove this assertion, please give a brief explanation of how the theorem was proven or give the name of the proof method used.)

Reductions and NP-completeness

Let G = (V, E) be an undirected graph, $I \subseteq V$. Recall that I is *independent* if for $i, j \in I$, $(i, j) \notin E$.

INDEPENDENT SET =
$$\left\{ (G, K) : \begin{array}{l} \text{there exists an independent} \\ \text{set } I \text{ for } G \text{ with } |I| = K \end{array} \right\}$$

- (a) Define a reduction R from 3SAT to INDEPENDENT SET. [5]
- (b) Show that $\varphi \in 3SAT$ if and only if $R(\varphi) \in INDEPENDENT$ SET. [6]
- (c) Show that R is logspace computable.
- (d) Show that INDEPENDENT SET is NP-complete. (Under the assumption that (a)–(c) have been established.)

[5]

[4]

[3]