\qquad
Name:
Matr.-Nr.:

Points:

Good luck!

Big \mathcal{O} notation

Which of the following functions are big \mathcal{O} of which others? (Recall that we are only interested in functions $f: \mathbb{N} \rightarrow \mathbb{N}$. Hence when we write $f(n)$, we really mean $\max (\{\lceil f(n)\rceil, 0\})$.)
(a) - $h(n)= \begin{cases}n \cdot \log _{2}(n) & \text { if } n \text { is even } \\ \frac{n^{3}}{\log _{2}(n)} & \text { if } n \text { is odd }\end{cases}$

- $n^{\log _{2}(n)}$
- n^{4711}
- $n \cdot \sqrt{n}$

Here the answer suffices in the form of a diagram:

(Meaning that $f_{1}(n)=\mathcal{O}\left(f_{2}(n)\right), f_{1}(n)=\mathcal{O}\left(f_{3}(n)\right), f_{2}(n)=\mathcal{O}\left(f_{4}(n)\right)$ and $f_{3}(n)=$ $\mathcal{O}\left(f_{4}(n)\right)$ and neither $f_{2}(n)=\mathcal{O}\left(f_{3}(n)\right)$ nor $f_{3}(n)=\mathcal{O}\left(f_{2}(n)\right)$.)
(b) Explain your answers to (a) convincingly.

Turing Machines

Consider the following Turing machine $\mathrm{M}=(K, \Sigma, \delta, s)$ with $K=\left\{s, s_{1}, s_{2}, s_{3}, s_{4}, s_{5}\right.$, yes, no $\}$, $\Sigma=\{\mathrm{a}, \mathrm{a}, \mathrm{a}, \mathrm{b}, \grave{\mathrm{b}}, \dot{\mathrm{b}}, \triangleright, \sqcup\}$ and δ defined as follows:

$p \in K$	$\sigma \in \Sigma$	$\delta_{M}(p, \sigma)$
s	\triangleright	$\left(s_{1}, \triangleright, \rightarrow\right)$
s_{1}	a	$\left(s_{2}\right.$, à,$\left.\rightarrow\right)$
s_{1}	b	$\left(s_{2}, \stackrel{\rightharpoonup}{\mathbf{b}}, \rightarrow\right)$
s_{1}	á	$\left(s_{5}\right.$, á,$\left.\leftarrow\right)$
s_{1}	b	$\left(s_{5}, \mathbf{b}, \leftarrow\right)$
s_{2}	a	$\left(s_{2}, \mathrm{a}, \rightarrow\right)$
s_{2}	b	$\left(s_{2}, \mathrm{~b}, \rightarrow\right)$
s_{2}	\sqcup	$\left(s_{3}, \sqcup, \leftarrow\right)$
s_{2}	á	$\left(s_{3}\right.$, á, $\left.\leftarrow\right)$
s_{2}	b	$\left(s_{3}, \mathbf{b}, \leftarrow\right)$

$p \in K$	$\sigma \in \Sigma$	$\delta_{M}(p, \sigma)$
s_{3}	a	$\left(s_{4}\right.$, á, $\left.\leftarrow\right)$
s_{3}	b	$\left(s_{4}, \underline{\mathrm{~b}}, \leftarrow\right)$
s_{3}	à	(no, à, -)
s_{3}	b	(no, ${ }^{\text {b }},-$)
s_{4}	a	$\left(s_{4}, \mathrm{a}, \leftarrow\right)$
s_{4}	b	$\left(s_{4}, \mathrm{~b}, \leftarrow\right)$
s_{4}	à	$\left(s_{1}\right.$, à,$\left.\rightarrow\right)$
s_{4}	b	$\left(s_{1}, \stackrel{\grave{b}}{ }, \rightarrow\right)$
s_{5}	à	$\left(s_{5}\right.$, à,$\left.\leftarrow\right)$
s_{5}	b	$\left(s_{5}, \dot{\mathrm{~b}}, \leftarrow\right)$
s_{5}	\triangleright	(yes, $\triangleright,-$)

(a) For arbitrary strings $x \in\{\mathrm{a}, \mathrm{b}\}^{*}$, what is $\mathrm{M}(x)$?
(b) Define the notion of space complexity of 1-string Turing machines formally and give an upper-bound on the space complexity of M.
(c) Explain informally how to extend M to decide the language $\mathrm{L}=\left\{w w \mid w \in\{\mathrm{a}, \mathrm{b}\}^{*}\right\}$.

Complexity Classes

Consider the following tasks.
(a) Define the complexity class \mathbf{P} and state a language L such that $L \in \mathbf{P}$.
(b) Prove or disprove coPSPACE = NPSPACE. (If you use a theorem to prove this assertion, please give a brief explanation of how the theorem was proven or give the name of the proof method used.)

Reductions and NP-completeness

Let $G=(V, E)$ be an undirected graph, $I \subseteq V$. Recall that I is independent if for $i, j \in I$, $(i, j) \notin E$.

$$
\text { INDEPENDENT } \operatorname{SET}=\left\{(G, K): \begin{array}{l}
\text { there exists an independent } \\
\text { set } I \text { for } G \text { with }|I|=K
\end{array}\right\}
$$

(a) Define a reduction R from 3SAT to INDEPENDENT SET.
(b) Show that $\varphi \in 3$ SAT if and only if $R(\varphi) \in$ INDEPENDENT SET.
(c) Show that R is logspace computable.
(d) Show that INDEPENDENT SET is NP-complete. (Under the assumption that (a)-(c) have been established.)

