Name:
Matr.-Nr.:

Points:

Good luck!

Small o notation

Which of the following functions are small o of which others? (Recall that we are only interested in functions $f: \mathbb{N} \rightarrow \mathbb{N}$. Hence when we write $f(n)$, we really mean $\max (\{\lceil f(n)\rceil, 0\})$.)
(a) $\cdot n^{\log n}$

- $n^{\mathcal{O}(1)}$
- $\log n$
- $\log (\log n)$
- $\log ^{2} n$

Here the answer suffices in the form of a diagram:

(Meaning that $f_{1}(n)=o\left(f_{2}(n)\right), f_{1}(n)=o\left(f_{3}(n)\right), f_{2}(n)=o\left(f_{4}(n)\right)$ and $f_{3}(n)=o\left(f_{4}(n)\right)$ and neither $f_{2}(n)=o\left(f_{3}(n)\right)$ nor $f_{3}(n)=o\left(f_{2}(n)\right)$.)
(b) Explain your answers to (a) convincingly.

Turing Machines

Consider the following Turing machine $\mathrm{M}=\left(K, \Sigma, \delta, q_{0}\right)$ with $K=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right.$, yes, no,$\Sigma=$ $\{0,1, \mathrm{X}, \mathrm{Y}, \triangleright, \sqcup\}$ and δ defined as follows. (We assume that if M cannot perform any step, then M halts in state no.)

$p \in K$	$\sigma \in \Sigma$	$\delta_{M}(p, \sigma)$
q_{0}	\triangleright	$\left(q_{0}, \triangleright, \rightarrow\right)$
q_{0}	0	$\left(q_{1}, \mathrm{X}, \rightarrow\right)$
q_{0}	Y	$\left(q_{3}, \mathrm{Y}, \rightarrow\right)$
q_{1}	0	$\left(q_{1}, 0, \rightarrow\right)$
q_{1}	1	$\left(q_{2}, \mathrm{Y}, \leftarrow\right)$
q_{1}	Y	$\left(q_{1}, \mathrm{Y}, \rightarrow\right)$

$p \in K$	$\sigma \in \Sigma$	$\delta_{M}(p, \sigma)$
q_{2}	0	$\left(q_{2}, 0, \leftarrow\right)$
q_{2}	X	$\left(q_{0}, \mathrm{X}, \rightarrow\right)$
q_{2}	Y	$\left(q_{2}, \mathrm{Y}, \leftarrow\right)$
q_{3}	Y	$\left(q_{3}, \mathrm{Y}, \rightarrow\right)$
q_{3}	\sqcup	$(y e s, \sqcup,-)$

(a) Define formally, what is understood by (i) "a TM decides a language L" and (ii) "a TM accepts a language L ".
(b) Define the language $L \subseteq\{0,1\}^{*}$ decided by M .

Complexity Classes

Consider the following tasks.
(a) Define the complexity class NP.
(b) Define the problems SAT and 3SAT.
(c) Define the function problem FSAT.
(d) Consider the following assertion: "Given a polynomial algorithm for SAT, we can define a polynomial algorithm for FSAT." Is this assertion correct? Explain your answer briefly.

Reductions and NP-completeness

(a) A clique in an undirected graph is a subgraph, where every two nodes are connected. A k-clique is a clique that contains k-nodes. Set

$$
\text { CLIQUE }=\{(G, k) \mid G \text { is an undirected graph with a } k \text {-clique }\}
$$

Show that CLIQUE is in NP.
(b) Assume the NP-completeness of SAT and show the NP-completeness of 3SAT. (Prepare a formal solution.)
(c) Given a graph G and nodes $1, n \in V$, is there a path between 1 and n ? This problem is called REACHABILITY. CIRCUIT VALUE is the problem, where given a variable-free circuit C, we ask whether there exists an assignment T, such that $T(C)=$ true?
Give the central idea of a reduction R from REACHABILITYto CIRCUIT VALUE. (An informal argument suffices.)

