Name:	MatrNr.:	Points:

Good luck!

Small *o* notation

Which of the following functions are small o of which others? (Recall that we are only interested in functions $f: \mathbb{N} \to \mathbb{N}$. Hence when we write f(n), we really mean $\max(\{\lceil f(n) \rceil, 0\})$.)

(a) • $n^{\log n}$

- $n^{\mathcal{O}(1)}$
- $\log n$
- $\log(\log n)$
- $\log^2 n$

Here the answer suffices in the form of a diagram:

(Meaning that $f_1(n) = o(f_2(n)), f_1(n) = o(f_3(n)), f_2(n) = o(f_4(n))$ and $f_3(n) = o(f_4(n))$ and neither $f_2(n) = o(f_3(n))$ nor $f_3(n) = o(f_2(n)).$)

(b) Explain your answers to (a) convincingly.

[5]

[5]

Turing Machines

Consider the following Turing machine $M = (K, \Sigma, \delta, q_0)$ with $K = \{q_0, q_1, q_2, q_3, yes, no\}, \Sigma = \{0, 1, X, Y, \triangleright, \sqcup\}$ and δ defined as follows. (We assume that if M cannot perform any step, then M halts in state *no*.)

$p \in K$	$\sigma \in \Sigma$	$\delta_M(p,\sigma)$	$p \in K$	$\sigma \in \Sigma$	$\delta_M(p,\sigma)$
q_0	\triangleright	$(q_0, \triangleright, \rightarrow)$	q_2	0	$(q_2, 0, \leftarrow)$
q_0	0	(q_1, X, \rightarrow)	q_2	Х	(q_0, X, \rightarrow)
q_0	Y	(q_3, Y, \rightarrow)	q_2	Y	(q_2, Y, \leftarrow)
q_1	0	$(q_1, 0, \rightarrow)$	q_3	Y	(q_3, Y, \rightarrow)
q_1	1	(q_2, Y, \leftarrow)	q_3	\Box	$(yes, \sqcup, -)$
q_1	Y	(q_1, Y, \rightarrow)			

- (a) Define formally, what is understood by (i) "a TM decides a language L" and (ii) "a TM accepts a language L".
- (b) Define the language $L \subseteq \{0, 1\}^*$ decided by M.

Complexity Classes

Consider the following tasks.

(a)	Define the complexity class NP .	[4]
(b)	Define the problems SAT and 3SAT.	[4]
(c)	Define the function problem FSAT.	[4]
(d)	Consider the following assertion: "Given a polynomial algorithm for SAT, we can define a polynomial algorithm for FSAT." Is this assertion correct? Explain your answer briefly.	[4]

Reductions and NP-completeness

(a) A *clique* in an *undirected* graph is a subgraph, where every two nodes are connected. A k-clique is a clique that contains k-nodes. Set

 $CLIQUE = \{(G, k) \mid G \text{ is an undirected graph with a } k\text{-clique}\}$

Show that CLIQUE is in **NP**.

- (b) Assume the NP-completeness of SAT and show the NP-completeness of 3SAT. (Prepare a formal solution.) [5]
- (c) Given a graph G and nodes $1, n \in V$, is there a path between 1 and n? This problem is called REACHABILITY. CIRCUIT VALUE is the problem, where given a variable-free circuit C, we ask whether there exists an assignment T, such that T(C) = true?

Give the central idea of a reduction R from REACHABILITY to CIRCUIT VALUE. (An informal argument suffices.)

[4]

[6]

[5]