Good luck!

Big \mathcal{O} notation (10 pts)

Which of the following functions are big- \mathcal{O} of which others? (Recall that we are only interested in functions $f: \mathbb{N} \rightarrow \mathbb{N}$. Hence when we write $f(n)$, we really mean $\max (\{\lceil f(n)\rceil, 0\})$.)
(a) - $f_{1}(n)= \begin{cases}n^{2} \cdot \log (n) & \text { if } n \text { is even } \\ \frac{n^{3}}{\log (n)} & \text { if } n \text { is odd }\end{cases}$

- n^{n}
- $n^{2} \cdot \log (n)$
- $n^{5+\sin (n)}$
- 481^{n}

Here the answer suffices in the form of a diagram:

(Meaning that $f_{1}(n)=\mathcal{O}\left(f_{2}(n)\right), f_{1}(n)=\mathcal{O}\left(f_{3}(n)\right), f_{2}(n)=\mathcal{O}\left(f_{4}(n)\right)$ and $f_{3}(n)=$ $\mathcal{O}\left(f_{4}(n)\right)$ and neither $f_{2}(n)=\mathcal{O}\left(f_{3}(n)\right)$ nor $f_{3}(n)=\mathcal{O}\left(f_{2}(n)\right)$.)
(b) Explain your answers to (a) convincingly.

Complexity Classes (14 pts)

(a) Define the complexity classes PSPACE and NPSPACE.
(b) Prove the following assertion: PSPACE $=$ NPSPACE.
(c) Prove the following assertion: If NP $\neq \mathbf{c o N P}$, then $\mathbf{P} \neq \mathbf{N P}$.

Hint: If you use a theorem to prove the second or third assertion, please give a brief explanation of how the theorem was proven or give the name of the proof method used.

Turing Machines (10 pts)

Consider the following Turing machine $\mathrm{M}=(K, \Sigma, \delta, s)$ with $K=\left\{s, s_{a}, s_{b}, s_{c}, s_{d}, s_{e}\right.$, yes, no $\}$, $\Sigma=\{0,0 ̀, 0 ́, 1, \grave{1}, 1 ́, \triangleright, \sqcup\}$ and δ defined as follows:

$p \in K$	$\sigma \in \Sigma$	$\delta_{M}(p, \sigma)$
s	\triangleright	$\left(s_{a}, \triangleright, \rightarrow\right)$
s_{a}	0	$\left(s_{b}, 0, \rightarrow\right)$
s_{a}	1	$\left(s_{b}, \grave{1}, \rightarrow\right)$
s_{a}	0	$\left(s_{e}, 0, \leftarrow\right)$
s_{a}	1	$\left(s_{e}, \hat{1}, \leftarrow\right)$
s_{b}	0	$\left(s_{b}, 0, \rightarrow\right)$
s_{b}	1	$\left(s_{b}, 1, \rightarrow\right)$
s_{b}	\sqcup	$\left(s_{c}, \sqcup, \leftarrow\right)$
s_{b}	0	$\left(s_{c}, 0, \leftarrow\right)$
s_{b}	1	$\left(s_{c}, 1, \leftarrow\right)$

$p \in K$	$\sigma \in \Sigma$	$\delta_{M}(p, \sigma)$
s_{c}	0	$\left(s_{d}, 0, \leftarrow\right)$
s_{c}	1	$\left(s_{d}, 1, \leftarrow\right)$
s_{c}	ò	(no, ò, -)
s_{c}	ì	(no, ì, -)
s_{d}	0	$\left(s_{d}, 0, \leftarrow\right)$
s_{d}	1	$\left(s_{d}, 1, \leftarrow\right)$
s_{d}	ò	$\left(s_{a}, \stackrel{\text { 人 }}{ }, \rightarrow\right)$
s_{d}	ì	$\left(s_{a}, \grave{1}, \rightarrow\right)$
s_{e}	ò	$\left(s_{e}, \stackrel{\grave{0}}{\prime}, \leftarrow\right)$
s_{e}	ì	$\left(s_{e}, \grave{1}, \leftarrow\right)$
s_{e}	\triangleright	(yes, $\triangleright,-$)

(a) For arbitrary strings $x \in\{0,1\}^{*}$, what is $\mathrm{M}(x)$?
(b) Explain informally how to extend M to decide the language $\mathrm{L}=\left\{w w \mid w \in\{0,1\}^{*}\right\}$.

Reductions and NP-completeness (16 pts)

(a) Define the problems 3SAT and INDEPENDENT SET.
(b) Define a reduction R from 3SAT to INDEPENDENT SET.
(c) Prove that $\varphi \in 3$ SAT if and only if $R(\varphi) \in$ INDEPENDENT SET.

