Points:

Name:

Matr.-Nr.:

Good luck!

Big \mathcal{O} notation (10 pts)

Which of the following functions are big- \mathcal{O} of which others? (Recall that we are only interested in functions $f: \mathbb{N} \to \mathbb{N}$. Hence when we write f(n), we really mean $\max(\{ [f(n)], 0 \})$.)

(a)
$$f_1(n) = \begin{cases} n^2 \cdot \log(n) & \text{if } n \text{ is even} \\ \frac{n^3}{\log(n)} & \text{if } n \text{ is odd} \end{cases}$$

$$n^n \\ n^2 \cdot \log(n) \\ n^{5+\sin(n)} \\ 481^n \end{cases}$$

Here the answer suffices in the form of a diagram:

(Meaning that $f_1(n) = \mathcal{O}(f_2(n)), f_1(n) = \mathcal{O}(f_3(n)), f_2(n) = \mathcal{O}(f_4(n))$ and $f_3(n) = \mathcal{O}(f_4(n))$ and neither $f_2(n) = \mathcal{O}(f_3(n))$ nor $f_3(n) = \mathcal{O}(f_2(n))$.)

(b) Explain your answers to (a) convincingly.

Complexity Classes (14 pts)

(a)	Define the complexity classes PSPACE and NPSPACE .	[4]
(b)	Prove the following assertion: $\mathbf{PSPACE} = \mathbf{NPSPACE}$.	[5]

(c) Prove the following assertion: If $\mathbf{NP} \neq \mathbf{coNP}$, then $\mathbf{P} \neq \mathbf{NP}$.

Hint: If you use a theorem to prove the second or third assertion, please give a brief explanation of how the theorem was proven or give the name of the proof method used.

[5]

[5]

[5]

Turing Machines (10 pts)

Consider the following Turing machine $\mathsf{M} = (K, \Sigma, \delta, s)$ with $K = \{s, s_a, s_b, s_c, s_d, s_e, yes, no\}, \Sigma = \{0, \dot{0}, \dot{0}, 1, \dot{1}, \dot{1}, \triangleright, \sqcup\}$ and δ defined as follows:

$p \in K$	$\sigma\in\Sigma$	$\delta_M(p,\sigma)$	$p \in K$	$\sigma \in \Sigma$	$\delta_M(p,\sigma)$
s	\triangleright	$(s_a, \triangleright, \rightarrow)$	s_c	0	$(s_d, \acute{0}, \leftarrow)$
s_a	0	$(s_b, \mathbf{\hat{0}}, \rightarrow)$	s_c	1	$(s_d, 1, \leftarrow)$
s_a	1	$(s_b, \mathbf{\hat{1}}, \rightarrow)$	s_c	Ò	$(no, \grave{0}, -)$
s_a	Ó	$(s_e, \acute{0}, \leftarrow)$	s_c	ì	$(no, \grave{1}, -)$
s_a	ĺ	$(s_e, 1, \leftarrow)$	s_d	0	$(s_d, 0, \leftarrow)$
s_b	0	$(s_b, 0, \rightarrow)$	s_d	1	$(s_d, 1, \leftarrow)$
s_b	1	$(s_b, 1, ightarrow)$	s_d	Ò	$(s_a, \mathbf{\hat{0}}, \rightarrow)$
s_b		$(s_c, \sqcup, \leftarrow)$	s_d	ì	$(s_a, \mathbf{\hat{1}}, \rightarrow)$
s_b	Ó	$(s_c, \acute{0}, \leftarrow)$	s_e	Ò	$(s_e, \dot{0}, \leftarrow)$
s_b	ĺ	$(s_c, 1, \leftarrow)$	s_e	ì	$(s_e, \grave{1}, \leftarrow)$
			s_e	\triangleright	$(yes, \triangleright, -)$

(a) For arbitrary strings $x \in \{0, 1\}^*$, what is M(x)?

[5]

(b) Explain informally how to extend M to decide the language $L = \{ww \mid w \in \{0,1\}^*\}$. [5]

Reductions and NP-completeness (16 pts)

(a) Define the problems 3SAT and INDEPENDENT SET.	[4]
(b) Define a reduction R from 3SAT to INDEPENDENT SET.	[6]
(c) Prove that $\varphi \in 3SAT$ if and only if $R(\varphi) \in INDEPENDENT$ SET.	[6]