Points:

Good luck!

1 Small o-Notation (15 pts)

(a) Put the following functions in the correct order, i.e., put the largest function on the top line and put equivalent function on the same line.

$$
2^{n}, n^{2} \cdot \log (n), n^{2}, f(n), 3^{n}
$$

Here $f(n)= \begin{cases}n^{2} \cdot \sqrt{n} & n \text { even } \\ 2^{n} & n \text { odd }\end{cases}$
The answer suffices, for example in the form of a matrix or in the form of a diagram:

(Meaning that $g_{1}(n)=o\left(g_{2}(n)\right), g_{1}(n)=o\left(g_{3}(n)\right), g_{2}(n)=o\left(g_{4}(n)\right)$ and $g_{3}(n)=o\left(g_{4}(n)\right)$ and neither $g_{2}(n)=o\left(g_{3}(n)\right)$ nor $g_{3}(n)=o\left(g_{2}(n)\right)$.)
(b) We write $f(n) \rightarrow \infty$ for $n \rightarrow \infty$ if $\forall C: \exists N: \forall n \geq N: f(n)>C$.

Prove the following implication:

$$
g(n)=\mathcal{O}(h(n)) \Longrightarrow g(f(n))=\mathcal{O}(h(f(n)))
$$

if $f(n) \rightarrow \infty$ for $n \rightarrow \infty$.

2 Complexity Classes (20 pts)

Definitions

(a) Give the definition of time constructible function.
(b) Define the complexity classes \mathbf{L} and $\mathbf{E X P}$.

Comparisons

Prove of disprove the below given relations between complexity classes. We write \subseteq for settheoretic inclusion (including equality) and \subsetneq for strict inclusion. You may freely use any of the theorems in the slides or the book. In such a case sufficient information has to be given in order to understand which theorem is applied.
(c) $\operatorname{TIME}\left(n^{2}\right) \subsetneq \operatorname{TIME}\left(n^{7}\right)$.
(d) $\operatorname{NSPACE}\left(n^{2}\right) \subseteq \operatorname{SPACE}\left(n^{4}\right)$.

3 Turing Machines (15 pts)

Consider the Turing machine (TM) $\mathrm{M}=(K, \Sigma, \delta, s)$ for palindromes

$p \in K$	$\sigma \in \Sigma$	$\delta(p, \sigma)$
s	0	$\left(q_{0}, \triangleright, \rightarrow\right)$
s	1	$\left(q_{1}, \triangleright, \rightarrow\right)$
s	\triangleright	$(s, \triangleright, \rightarrow)$
s	\sqcup	$(y e s, \sqcup,-)$
q_{0}	0	$\left(q_{0}, 0, \rightarrow\right)$
q_{0}	1	$\left(q_{0}, 1, \rightarrow\right)$
q_{0}	\sqcup	$\left(q_{0}^{\prime}, \sqcup, \leftarrow\right)$
q_{1}	0	$\left(q_{1}, 0, \rightarrow\right)$
q_{1}	1	$\left(q_{1}, 1, \rightarrow\right)$
q_{1}	\sqcup	$\left(q_{1}^{\prime}, \sqcup, \leftarrow\right)$

$p \in K$	$\sigma \in \Sigma$	$\delta(p, \sigma)$
q_{0}^{\prime}	0	(q, \sqcup, \leftarrow)
q_{0}^{\prime}	1	$(n o, 1,-)$
q_{0}^{\prime}	\triangleright	$($ yes $, \triangleright, \rightarrow)$
q_{1}^{\prime}	0	$(n o, 1,-)$
q_{1}^{\prime}	1	(q, \sqcup, \leftarrow)
q_{1}^{\prime}	\triangleright	$(y e s, \triangleright, \rightarrow)$
q	0	$(q, 0, \leftarrow)$
q	1	$(q, 1, \leftarrow)$
q	\triangleright	$(s, \triangleright, \rightarrow)$

(a) Give good upper- and lower-bounds for the time-complexity of the TM M
(b) Prove or disprove that for the language of palindromes PALINDROMES, we have PALINDROMES $\in \mathbf{S P A C E}(\log n)$

