
COMPLEXITY AND COMPLETENESS OF FINDING

ANOTHER SOLUTION AND ITS APPLICATION TO

PUZZLES

別解問題の計算論的複雑さと完全性およびパズルへの応用

by

Takayuki YATO

八登 崇之

A Master Thesis

修士論文

Submitted to

the Graduate School of Science

The University of Tokyo

on January 2003

in Partial Fulfillment of the Requirements

for the Degree of Master of Science
in Information Science

Thesis Supervisor: Hiroshi IMAI 今井 浩
Professor of Information Science

ABSTRACT

The Another Solution Problem (ASP) of a problem Π is the following problem: for a given

instance x of Π and a solution s to it, find a solution to x other than s. The notion of ASP

as a new class of problems was first introduced by Ueda and Nagao. They also pointed out

that polynomial-time parsimonious reductions which allow polynomial-time transformation

of solutions can derive the NP-completeness of ASP of a certain problem from that of ASP

of another. They used this property to show the NP-completeness of ASP of Nonogram, a

sort of puzzle. Following it, Seta considered the problem to find another solution when n

solutions are given. (We call the problem n-ASP.) He proved the NP-completeness of n-ASP

of some problems, including Cross Sum, for any n.

In this thesis we establish a rigid formalization of n-ASPs to investigate their characteristics

more clearly. In particular we introduce ASP-completeness, the completeness with respect to

the reductions satisfying the properties mentioned above, and show that ASP-completeness

of a problem implies NP-completeness of n-ASP of the problem for all n. Moreover we

research the relation between ASPs and other versions of problems, such as counting problems

and enumeration problems, and show the equivalence of the class of problems which allow

enumerations of solutions in polynomial time and the class of problems of which n-ASP is

solvable in polynomial time.

As Ueda and Nagao pointed out, the complexity of ASPs has a relation with the difficulty

of designing puzzles. We prove the ASP-completeness of three popular puzzles: Slither Link,

Number Place and Fillomino. The ASP-completeness of Slither Link is shown via a reduction

from the Hamiltonian circuit problem for restricted graphs, that of Number Place is from the

problem of Latin square completion, and that of Fillomino is from planar 3SAT. Since ASP-

completeness implies NP-completeness as is mentioned above, these results can be regarded

as new results of NP-completeness proof of puzzles.

論文要旨

問題 Π に対する別解問題 (ASP)というのは、Π のインスタンス x とそれに対する 1 つの解

s が与えられた時に、x の s 以外の解を求める問題のことである。ASP を新しい問題クラスと

とらえたのは Ueda と Nagao が最初であり、彼らはさらに、多項式時間 parsimonious 還元（解

の間に 1 対 1 対応が存在する）で対応する解への変換も多項式時間で行えるものを用いてある

問題の ASP の NP 完全性から別の問題の ASP の NP 完全性が導出できることを指摘した。そ

して彼らはこの性質を利用してパズルの一種である「ののぐらむ」の ASP の NP 完全性を示し

た。続いて Seta は n 個の解が与えられた時にもう 1 つの解を求める問題（ここでは n-ASP と

呼ぶ）について考察した。そして「カックロ」などのいくつかの問題の n-ASP が任意の n につ

いて NP 完全であることを示した。

本論文では、n-ASP に対して、その性質の研究をより明確に行うための厳格な定式化を行う。

特に、上述の性質を満たす還元に関する完全性である ASP 完全性について考察し、ASP 完全問

題について、その全ての n についての n-ASP が NP 完全となることを示す。さらに、ASP と

他の種（数え上げ問題や列挙問題）との関係について調べ、多項式時間で列挙が可能な問題のク

ラスと多項式時間で n-ASP が解ける問題のクラスが一致することを示す。

Ueda と Nagao が指摘するように、ASP の計算量はパズルの作成の難しさと関係がある。本

論文では 3 つの有名なパズル、スリザーリンクとナンバープレース（数独）とフィルオミノにつ

いてその ASP 完全性を示す。スリザーリンクの ASP 完全性は制限されたグラフに対するハミル

トン閉路問題から、ナンバープレースはラテン方陣完成問題から、フィルオミノは平面的 3SAT

からの還元を用いて示される。上で述べたように、ASP 完全な問題は NP 完全でもあるので、こ

れらの結果は、パズルの NP 完全性の証明に関する新しい結果といえる。

Acknowledgements

I am grateful to my supervisor Hiroshi Imai for his advice and encouragement.

I would also like to thank Takahiro Seta, the co-author of the paper related to this

thesis. I further thank Yasuhito Asano, Tsuyoshi Ito, and all other members of Imai

Laboratory for their helpful advice and suggestion.

Contents

1 Introduction 1

1.1 Background . 1

1.1.1 Another Solution Problem . 1

1.1.2 Computational complexity of puzzles 3

1.1.3 Relation between puzzles and ASPs 5

1.2 Our Contribution . 6

1.3 Organization of This Thesis . 7

2 Another Solution Problem (ASP) 8

2.1 Preliminaries . 8

2.2 Formalization of ASP . 9

2.3 ASP-completeness . 11

2.3.1 Definitions and Fundamental Results 11

2.4 Relations Between ASP and Other Versions of Problems 13

2.4.1 Relation between ASP-completeness and #P-completeness . . 13

2.4.2 Relation between ASPs and enumeration problems 14

2.4.3 Relation between ASP-completeness and NP-completeness . . 15

3 ASP-completeness Results of Puzzles 19

3.1 Slither Link . 19

3.2 Number Place . 22

3.3 Fillomino . 26

3.4 Some Other Puzzles . 31

4 Concluding Remarks 33

i

Chapter 1

Introduction

1.1 Background

1.1.1 Another Solution Problem

Since the invention of NP-completeness by Karp and Cook in early 1970’s, the

theory of computational complexity have played an important role in analyzing the

difficulty of problems. In particular, the theory largely facilitated the proof that a

certain problem is really difficult to some extent. For example, once a problem is proved

to be NP-complete, the fact means that the problem cannot be solved efficiently (i. e.,

in polynomial time) by deterministic algorithms unless P = NP, which is not believed

to happen, and thus tells people that they should consider some alternative measures,

such as approximation and randomization.

In some cases special type of problems were studied: when we are given not only

an instance of the problem but also a solution, find a solution other than the given

one. This type of problem is of interest because there is possibility that a solution

given in advance will make the problem easier. To this question some negative results

are known. One example is the following problem:

Hamiltonian Circuit Problem:

Input: an undirected graph G.

Output: does G have a Hamiltonian circuit?

This is a famous NP-complete problem. Moreover, Papadimitriou noted in his

book [14] that the problem to decide whether a given graph G has a Hamiltonian

circuit different from a given one is also NP-complete. Another example is the prob-

lem of partial Latin square completion. Colbourn [4] proved that deciding the existence

1

of another solution, as well as this problem itself, is NP-complete. (See Section 3.2

for the detail of that problem.)

On the other hand there is a positive result about the question. An undirected

graph G is called cubic graph if the degree of all vertices is exactly three. Hamiltonian

circuit problem is known to remain NP-complete if input graphs are restricted to

cubic graphs [9]. However, Smith’s theorem, which states that each edge in a cubic

graph G is in an even number of Hamiltonian circuit of G, implies that

if a cubic graph has a Hamiltonian circuit, it has a second one.

That means the problem to decide the existence of another Hamiltonian circuit when

a cubic graph and its Hamiltonian circuit is given is trivial, because the answer is

always ‘yes’. (However it is also known that to find another Hamiltonian circuit is not

easy. See [14].)

Ueda and Nagao introduced in their paper [22] in 1996 the notion of regarding

problems to determine the existence of another solution as a new class of problems,

and named such problems “Another Solution Problem (ASP).” Moreover, they also

pointed out that parsimonious reductions which allow transformation of solutions in

polynomial time (what we call ASP reduction in this thesis) is useful to study the

complexity of ASPs. (A parsimonious reduction is a reduction which preserves the

number of solutions, and is used to show the #P-completeness of counting problems.)

It is because when there is an ASP reduction from a problem Π1 to another problem

Π2, then the NP-completeness of ASP of Π2 can be derived from that of ASP of Π1.

Following this approach they proved the NP-completeness of ASP of Nonogram (a

kind of puzzle) by showing such a reduction from 3-dimensional matching (3DM) to

Nonogram.

Following that Seta [21, 20] considered the problem to find another solution when

n solutions are given. (We call the problem n-ASP.) He noted that an ASP reduction

from a problem Π to 1-ASP of Π itself can be extended to an ASP reduction from Π

to n-ASP of Π. Using this result he showed the NP-completeness of n-ASP of some

problems, including a basic logic problem 1-in-3 SAT and a puzzle called Cross Sum,

for any nonnegative integer n.

The reason that in the history of ASP some puzzles are mentioned is that ASP has

a close relation to puzzles. Before we state the relation, let us review the computational

complexity of puzzles.

2

Game Complexity Reference

Shogi EXPTIME-complete [1]

Chess EXPTIME-complete [8]

Go EXPTIME-complete [17]

Checkers EXPTIME-complete [18]

Gomoku PSPACE-complete [16]

Othello PSPACE-complete [11]

Table 1.1: Complexity of two-player games

1.1.2 Computational complexity of puzzles

Today a wide variety of puzzles are played all over the world. One of the sources

of their fun is their difficulty. In fact, the reason that two-player games like go, shogi

and chess keep their popularity over centuries is that these games cannot be easily

analyzed, even with the aid of computers.

Many results are known about the computational complexity about games and

puzzles. First, let us consider two-player perfect-information games — where both

players know all information about the game-play. About such games, the problem

to determine which player wins at a given game state under ideal play can be the-

oretically computed. The complexity of this problem about several popular games

(with arbitrarily large boards) are shown in Table 1.1. It is because the problem is

unrealistically difficult that the fun of these games is not lost.

Next consider one-player puzzles. In this case, problems of interest are (i) whether

a given problem is solvable, and (ii) to find the solution with the fewest moves (about

puzzles regarding motion). Many complexity results are known also in this field. In

addition “offline” version of some one-player games which are not perfect-information

in themselves. For example, the problem to determine whether a given configuration

of Minesweeper with some cells uncovered (and marked with the number of adjacent

mines) can be realized by some distribution of mines is proved to be NP-complete [12].

Some results on complexity of puzzles are shown in Table 1.2. The survey by De-

maine [5] refers to more results on the computational complexity of games and puzzles.

In this thesis we focus on a certain type of puzzles, pencil puzzles. Pencil puzzles

(or pencil-and-paper puzzles) are those offered as some figure on the paper and solved

by drawing on the figure with a pencil. Here is a list of pencil puzzles which are very

popular in Japan:

3

Game Complexity Reference

15-puzzle (optimal play) NP-complete [15]

Cryptarithm NP-complete [7]

Peg Solitaire NP-complete [23]

Clickomania (Same-Game) NP-complete [3]

“Offline” Minesweeper NP-complete [12]

“Offline” Tetris NP-complete [6]

Table 1.2: Complexity of one-player games.

Problem

3 1
1

1
1
1

1
1

1
2

3
11
111
11
12

-

Solution

3 1
1

1
1
1

1
1

1
2

3
11
111
11
12

Figure 1.1: An example of Nonogram.

• Nonogram (Griddler, Paint-by-numbers)

• Slither Link

• Cross Sum (Kakkuro)

• Number Place (Sudoku)

• Nurikabe

• Heyawake

Pencil puzzles have the property that “to solve the problem is hard, but to verify the

solution is easy”. For example, Nonogram is the puzzle where you paint some cells of

a grid black following the given hint and restore a picture. An example of Nonogram

is shown in Fig. 1.1. The hint at the bottom row “2, 1” means that black cells in

that row must appear (when searched from left to right) first as a length two chunk,

then as a lone cell. To solve this puzzle needs some brain work, but to show that the

obtained solution is correct is trivial. (For the detail of Nonogram and its complexity

see [22].)

4

In a contrast to the vast amount of literature of computational complexity of

games and puzzles, few results about pencil puzzles are known. (One reason for this

is that many of them are originated in Japan and known only in Japan.) Before the

author started the study the result in 1996 by Ueda and Nagao [22] that states NP-

completeness of Nonogram was the only such result. For the present, the following

results are known:

• The author proved NP-completeness of Slither Link in 2000 [26].

• Seta proved NP-completeness of Cross Sum in 2002 [20].

• Friedman proved NP-completeness of three (less popular) puzzles introduced on

Nikoli, a famous puzzle magazine in Japan.

In this thesis we consider the ASP of puzzles. In the next section we state the

relation between puzzles and ASPs.

1.1.3 Relation between puzzles and ASPs

Ueda and Nagao [22] pointed out that ASP has a close relation to designing puzzles

in the following respect: For many sorts of puzzles, in particular pencil puzzles, the

solution of a problem is strongly desired to be unique. Thus puzzle designers have

to check whether the designed problem has no solutions other than the intended one.

This work is exactly an instance of ASPs.

We point out that this aspect is particularly important when thinking of automatic

generation of puzzle problems by computers. Designing puzzles is, as well as solving

them, complicated brain work and relies heavily on human intuition and experience.

Thus puzzles of high quality are not easy to obtain and thus are precious. Therefore

it would be nice if a large number of puzzles could be generated automatically by

computers. (Saito [19] treated the automatic generation of Slither Link.) One way to

make a puzzle problem is as follows.

1◦ First design a figure of solution. (In the case of Nonogram, it is the black-and-

white pattern of the grid.)

2◦ Make a problem which ‘satisfies’ the designed solution. Usually such a problem

is easily derived from the solution. (Numbers telling the length of black chunks

in the case of Nonogram,)

3◦ Solve the constructed problem and check if it has a solution other than the

designed one. If not, the construction is completed.

5

When humans design puzzles, the method shown above is practical in the case of

puzzles “painting a picture” like Nonogram (because the quality of the resulting picture

is of great importance in such puzzles), but otherwise this method is usually not taken.

Instead, a designer constructs a problem and its solution at the same time with care

to preserve the uniqueness of solution by using heuristics obtained from experience.

However, this method depends on human experience and not suitable for computers,

and thus computers must resort to the previous “generate-and-test” method. In this

situation, if the ASP of the puzzle is polynomial-time solvable and we have an efficient

algorithm to solve it, then we can generate a vast number of problems. Of course the

quality of the generated problem must be also considered, but we can expect that the

possibility of massive generation of problems at least helps us obtain good puzzles.

Investigating the ASP of puzzles is thus important also in the respect of automatic

generation of problems.

In the last of this section, we list the results on the ASP of puzzles known at

present.

• Ueda and Nagao [22] proved the NP-completeness of the 1-ASP of Nonogram.

• Seta [20] proved the NP-completeness of the n-ASP of Nonogram and Cross

Sum for any nonnegative integer n.

1.2 Our Contribution

In this thesis we provide a rigid formalization of n-ASP in order to enable more

strict argument in studying the characteristics of n-ASPs and ASP reductions. In

particular we consider the completeness with respect to ASP reduction (we call it

ASP-completeness), and prove that for any ASP-complete problem its n-ASP is NP-

complete (as a decision problem) for any nonnegative integer n.

Moreover we investigated the relation between ASPs and other versions of prob-

lems, such as counting problems and enumeration problems. There we showed that

the class of problems of which n-ASP is solvable in polynomial time is equal to the

class of problems which allow enumerations of solutions in polynomial time.

As a contribution to the field of combinatorial puzzles, we prove the ASP-

completeness of three popular puzzles: Slither Link, Number Place, and Fillomino.

Since ASP-completeness implies NP-completeness these results also add new items

to the list of NP-complete puzzles. Note also that ASP-completeness implies #P-

completeness of counting the solutions.

6

1.3 Organization of This Thesis

The organization of this thesis is as follows. In Chapter 2, we review some ba-

sic concept of computational complexity and give the definition of n-ASP and ASP

reduction under our formalization. Then we introduce ASP-completeness as a new

concept and discuss its property. Moreover we investigate the relation between ASPs

and some other versions of problems. In Chapter 3, we prove ASP-completeness of

three popular puzzles: Slither Link, Number Place and Fillomino. For each of these

puzzles, we first state the formal rule and then give the proof of ASP-completeness.

In Chapter 4, we summarize our results and conclude the thesis with future work.

7

Chapter 2

Another Solution Problem (ASP)

2.1 Preliminaries

In this section we state a theory of Another Solution Problem (ASP). First of all

we use the following existing formalization of function problems in order to facilitate

the argument:

Definition 2.1 Let Π be a triple (D, S, σ) satisfying the following:

• D is the set of the instances of a problem.

• S is a set which includes all that can be a solution. (S may include extra things.

When we think on the basis of Turing machines, S may be the set of all the

strings.)

• σ is a mapping from D to 2S . For an instance x ∈ D, σ(x) (⊆ S) is called the

solution set to x, and an element of σ(x) is called an solution to x.

Then the problem which finds a solution to an instance x ∈ D (or simply Π itself) is

called a function problem.

Under this formalization, the class FNP is described as follows:

Definition 2.2 FNP is a class consisting of function problems Π = (D, S, σ) such

that the following holds:

• There exists a polynomial p such that |s| ≤ p(|x|) holds for any x ∈ D and any

s ∈ σ(x).

• For any x ∈ D and y ∈ S, the proposition y ∈ σ(x) can be decided in polynomial

time.

8

Definition 2.3 Let Π = (D,S, σ) be a function problem. Y = {x ∈ D | σ(x) 6= ∅}
Πd = (D, Y) (that is, the pair consist of the set of all the instances and the set of all

the yes-instances) is called the decision problem induced by Π or simply the decision

problem of Π.

Note that it follows from the characteristic of NP that for any decision problem

Π̂ ∈ NP there exists a function problem Π ∈ FNP satisfying Πd = Π̂. (Of course,

Π ∈ FNP implies Πd ∈ NP.)

2.2 Formalization of ASP

Under the framework described in the previous section, we formalize ASPs as

follows:

Definition 2.4 Let Π = (D, S, σ) be a function problem. For Π and a nonnegative

integer n, we call the function problem Π[n] = (D[n], S, σ[n]) constructed as follows the

n-another solution problem of Π (or shortly n-ASP).

D[n] = {(x, Sx) | Sx ⊆ σ(x), |Sx| = n}, (2.1)

σ[n](x, Sx) = σ(x)− Sx (2.2)

We call the decision problem of an n-another solution problem n-another solution

decision problem.

We use the notation Πd and Π[n] as the meaning mentioned above throughout

this paper.

The next definition is polynomial-time ASP reduction. This is parsimonious re-

duction which allows polynomial-time transformation of solutions and is introduced

by Ueda and Nagao [22]. (Recall that parsimonious reductions are used for proving

#P-completeness of counting problems.)

Definition 2.5 Let Π1 = (D1, S1, σ1) and Π2 = (D2, S2, σ2) be function problems.

We call the pair ϕ = (ϕD, ϕS) satisfying the following polynomial-time ASP reduction

from Π1 to Π2:

• ϕD is a polynomial-time computable mapping from D1 to D2.

• For any x ∈ D1, ϕS is a polynomial-time computable bijection from σ1(x) to

σ2(ϕD(x)).

9

If there is a polynomial-time ASP reduction from Π1 to Π2, Π1 is called to be polyno-

mial-time ASP reducible to Π2 (denoted by Π1 ¹ASP Π2).

By definition, all the ASP reductions are parsimonious. Although the converse

does not always hold, many parsimonious reductions involve concrete transformation

of solutions and thus are ASP-reductions.

The relation ¹ASP is transitive, like other reducibility relations. If Π1 ¹ASP Π2,

then Π1d is polynomial-time reducible (as a decision problem) to Π2d.

Seta stated some fundamental characters about ASP reductions in [20]. Since he

omits their proof, we give one along the framework.

First, the relation of ASP reducibility is invariant with respect to “taking an ASP”

operation.

Proposition 2.1 Let Π and Π′ be function problems. If Π ¹ASP Π′, then Π[n] ¹ASP

Π′[n] for any nonnegative integer n.

Proof Let Π = (D, S, σ) and Π′ = (D′, S′, σ′), and let ϕ = (ϕD, ϕS) be a

polynomial-time ASP reduction from Π to Π′.

Let (x, {s1, . . . , sn}) (∈ D[n]) be an instance of Π[n], and let T denote its solution

set σ[n](x, {s1, . . . , sn}). By the definition of ASP, x is an instance of Π (i.e. x ∈ D),

and its solution set σ(x) equals {s1, . . . , sn} ∪ T .

We can construct a polynomial-time ASP reduction ϕ̂ = (ϕ̂D, ϕ̂S) from Π[n] to

Π′[n] as follows: for an instance (x, {s1, . . . , sn}) of Π[n] define ϕ̂D(x, {s1, . . . , sn})
to be (ϕD(x), {ϕS(s1), . . . , ϕS(sn)}) (let it be denoted by y), and ϕ̂S to be ϕS re-

stricted onto T . Since σ′(ϕD(x)) = {ϕS(s1), . . . , ϕS(sn)} ∪ ϕS(()T), it follows that

σ′[n](y) = ϕS(()T). That is, (ϕ̂D, ϕ̂S) is in fact an ASP reduction. The polynomial-

time computability of ϕ̂D and ϕ̂S is derived from that of ϕD and ϕS.

Second, it holds that n-ASP of m-ASP is (m+n)-ASP (of the original problem).

Proposition 2.2 For any function problem Π and nonnegative integers m,n,

(Π[m])[n] ¹ASP Π[m+n].

Proof Let Π = (D,S, σ). An instance x̃ of (Π[m])[n] is of the form

((x, {s1, . . . , sm}), {t1, . . . , tn}) (x ∈ D; s1, . . . , sm, t1, . . . , tn ∈ σ(x)).

For this we set ϕD(x̃) to be (x, {s1, . . . , sm, t1, . . . , tn}). Then the solution set of x̃ is

equal to that of ϕD(x̃), and thus ϕS can be set to be the identity function.

Combining the two propositions, we obtain the following important result.

10

Theorem 2.3 Let Π be a function problem. If Π ¹ASP Π[1], then for any nonnegative

integer n Π[n] ¹ASP Π[n+1]. (Therefore Π ¹ASP Π[n],)

Proof From Π ¹ASP Π[1] and Proposition 2.1 we obtain Π[n] ¹ASP (Π[1])[n], and from

Proposition 2.2 we obtain (Π[1])[n] ¹ASP Π[n+1]. Thus the theorem holds because of

the transitivity of ¹ASP.

2.3 ASP-completeness

2.3.1 Definitions and Fundamental Results

ASP-completeness is completeness with respect to ASP reductions, and defined

as follows:

Definition 2.6 A function problem Π is ASP-complete if and only if Π ∈ FNP, and

Π′ ¹ASP Π for any Π′ ∈ FNP.

Proposition 2.4 Let Π and Π′ be function problems. If Π is ASP-complete, Π′ ∈
FNP and Π ¹ASP Π′, then Π′ is ASP-complete.

Our first ASP-complete problem is SAT. Here SAT represents the function prob-

lem of satisfiability. (The decision problem is denoted by SATd.)

Theorem 2.5 SAT is ASP-complete.

Proof Cook’s reduction is an ASP reduction.

An important property of ASP-completeness is that it implies the NP-

completeness of n-ASPs for any n. We first show this property as to SAT.

Theorem 2.6 1. SAT ¹ASP SAT[1].

2. For any nonnegative integer n, SAT[n]d is NP-complete.

Proof 1. We construct a polynomial-time ASP reduction ϕ = (ϕD, ϕS) from SAT

to SAT[1].

For a given instance of SAT ψ (a CNF formula), we construct a CNF formula ψ′

as follows:

• We introduce a new variable w, and for each clause l1 ∨ · · · ∨ lr in ψ make a

clause l1 ∨ · · · ∨ lr ∨ w and add it to ψ′.

• For each variable x we add a clause x ∨ w̄ (CNF of w ⇒ xi) to ψ′.

11

Then define ϕD(ψ) to be (ψ′, {g}), where g is the assignment in which all variables

are true. For a solution h to ψ, let ϕS(h) be h with assignment w = false added.

2. From 1 and Theorem 2.3, we obtain SAT ¹ASP SAT[n] for any nonnegative

integer n. Thus SATd is polynomial-time reducible to SAT[n]d and the theorem holds.

Using this result and Proposition 2.1 the property is shown for all ASP-complete

problems.

Theorem 2.7 For any ASP-complete function problem Π and any nonnegative integer

n, Π[n]d is NP-complete.

Proof Since Π is ASP-complete, SAT ¹ASP Π holds, thus it follows from Proposi-

tion 2.1 that SAT[n] ¹ASP Π[n]. This implies that SAT[n]d ¹ Π[n]d. Thus Π[n]d is

shown to be NP-complete from Theorem 2.6.

Here follow the proofs of ASP-completeness of some logic problems, which are

used in the later sections.

Theorem 2.8 3SAT is ASP-complete.

Proof We show a polynomial-time ASP reduction from SAT. Let ψ be a CNF

formula given as an instance of SAT. We modify ψ as follows:

• Introduce new variables t1, t2, t3 and add these 7 clauses: t1 ∨ t2 ∨ t3, t1 ∨ t2 ∨ t̄3,

t1 ∨ t̄2 ∨ t3, t1 ∨ t̄2 ∨ t̄3, t̄1 ∨ t2 ∨ t3, t̄1 ∨ t2 ∨ t̄3, t̄1 ∨ t̄2 ∨ t3. (All of t1, t2, t3 must

be true.)

• Add t̄1 to each clause with two literals, and add t̄1 and t̄2 to each clause with

one literal,

• Divide each clause with 4 or more literals l1∨ l2∨ l3∨· · ·∨ lr as follows: l1∨ l2∨ d̄,

l̄1 ∨ d, l̄2 ∨ d (these are CNF of (l1 ∨ l2) ≡ d), d ∨ l3 ∨ · · · ∨ lr, where d is a new

variable. While the last clause has 4 or more literals, repeat the division.

Let ψ′ denote the modified formula. Then ψ′ is satisfiable if and only if ψ is satisfiable.

Moreover, for each truth assignment h satisfying ψ, there is only one assignment that

can be obtained by extending h and satisfy ψ′.

1-in-3 SAT is the following problem: given a 3-CNF formula, find a truth assign-

ment in which each clause contains exactly one true literal.

Theorem 2.9 1-in-3 SAT is ASP-complete.

12

Proof Seta [21] constructs a polynomial-time ASP reduction (in terminology of this

paper) from 3SAT to 1-in-3 SAT. ASP-completeness of this problem follows from the

result and ASP-completeness of 3SAT.

2.4 Relations Between ASP and Other Versions of Problems

2.4.1 Relation between ASP-completeness and #P-completeness

As is stated in the previous section, all the ASP reductions are parsimonious.

which means that if a function problem is ASP-complete the counting version of the

problem is #P-complete. Here the first question of interest related to the fact is:

whether does the converse hold or not? The answer is no.

Proposition 2.10 There is a function problem which is not ASP-complete but its

counting version is #P-complete.

Proof bAs is known from Theorem 2.7, the decision problem of an ASP-complete

problem must be NP-complete. Therefore the existence of a #P-complete problem

of which the decision problem is not NP-complete proves the proposition. Consider

the following problem, Bipartite Matching Problem: given a bipartite graph G, find

a perfect matching of G. A well-known fact states that although the decision version

of this problem (determining the existence of a perfect matching) is polynomial-time

solvable, the counting version (finding the number of perfect matchings) is equivalent

to calculating the permanent of a 0-1 matrix, which is proved to be #P-complete by

Valiant [25].

Now that we know Bipartite Matching Problem is not ASP-complete, then the

next question of interest is whether the n-ASP of this problem is NP-complete (for

some n). The answer is negative again.

Theorem 2.11 The n-ASP of Bipartite Matching Problem is solvable in polynomial

time for any nonnegative integer n.

Proof Uno [24] presents an algorithm for enumerating all the perfect matchings in

a given bipartite graph within O(|V |) time per a matching, where |V | is the number

of vertices of the graph. The n-ASP of Bipartite Matching Problem can be solved by

using this algorithm in the following way:

1◦ For a given input bipartite graph G, generate n + 1 perfect matchings in G by

using the enumeration algorithm.

13

2◦ Among the generated matchings there must be one which is not equal to any of

n matchings which are given as input. Output such one.

This procedure can be done in polynomial time with respect to the input length. Note

that the input contains n matchings and thus has the length proportional to n.

This result suggests that difficulty of counting problems does not reflect on that

of ASPs.

2.4.2 Relation between ASPs and enumeration problems

The proof of Theorem 2.11 uses the fact that the enumeration of perfect matchings

can be performed efficiently.

This result can be generalized to the following relation berween ASP (as a function

problem) and enumeration problem:

Theorem 2.12 Let Π = (D,S, σ) be a function problem in FNP, and suppose that

there is an algorithm which enumerates all the solutions to a given instance x of Π and

which takes only polynomial time (with respect to |x|) to output each solution. Then

Π[n] is solvable in polynomial time for any nonnegative integer n.

Proof Since Π ∈ FNP, there exists a polynomial p such that |s| ≤ p(|x|) holds for

any x ∈ D and any s ∈ σ(x).

Let M be a DTM which enumerates all the solutions in p1(|x|) time per a solution,

where p1 is a polynomial and |x| is the input length. Just like Theorem 2.11, we can

construct a DTM M ′ which solves an instance of Π[n] (denoted by (x, T), where

T ⊆ σ(x)) by using M to output n+1 solutions to x and finding a solution which does

not belong to T . This takes at most (n+1)p2(|x|) time (p2 is a polynomial determined

by p1 and p). On the other hand, the input length is at least |x|+ n. Therefore M ′ is

polynomial time bounded.

The following weaker form of the converse of Theorem 2.12 also holds:

Theorem 2.13 Let Π = (D, S, σ) be a function problem in FNP such that Π[n] is

solvable in polynomial time for any nonnegative integer n.

Then there is an algorithm which enumerates all the solutions to a given instance

x of Π and which takes only polynomial time with respect to |x| and K to output first

K solutions.

Proof For each n let Mn be a p3(|x|)-time DTM for Π[n]. We can construct a DTM

M ′ which enumerates all the solutions of x (∈ D) (an instance of Π) as follows:

14

1◦ Let k be 0 and T be the empty set.

2◦ Run Mk with the input (x, T). If the answer is ‘no’ (no other solution exists),

halt.

3◦ Otherwise the answer is a solution s which is not in T . Output s.

4◦ Add s to T and add 1 to k, and go to 2◦.

The length of the input to Mk is at most |x| + k · p(|x|) (where p is the same as in

Theorem 2.12). Thus the total running time needed to output first K solutions is at

most
K−1∑

k=0

p3(|x|+ k · p(|x|)) ≤
K−1∑

k=0

p4(|x|, k) ≤ K · p4(|x|,K),

(p4 is a polynomial determined by p3 and p). Therefore M ′ satisfied the given condi-

tion.

2.4.3 Relation between ASP-completeness and NP-completeness

We proved that ASP-completeness implies NP-completeness of n-ASP for all n.

Then the following important problem arises:

Problem 2.1 Let Π be a function problem such that Π[n]d is NP-complete for any

nonnegative integer n. Then can Π be said to be ASP-complete? (Does the converse

of Theorem 2.7 hold or not?)

Before the argument about this ptoblem, we note that NP-completeness for in-

finitely many n is necessary.

Proposition 2.14 For any nonnegative integer k, there is a function problem Π which

satisfes the following:

Although Πd, Π[1]d, . . . , Π[k−1]d are all NP-complete, Π[k]d is trivial (the answer

is always ‘yes’).

Proof Let Π = (D, S, σ) be a function problem such that Π[n]d is NP-complete for

any nonnegative integer n (SAT for example). Then we construct a function problem

Π̂ = (D, Ŝ, σ̂) for given k as follows:

• Ŝ = S t {X | X ⊆ S, |X| = k}. (t means disjoint union.)

• For any x ∈ D, Let M(x) be {X | X ⊆ σ(x), |X| = k} (the set of all the k-sets

consisting of elements of σ(x)) and define σ̂(x) to be σ(x) tM(x).

15

We prove that Π̂ satisfies the condition given in the proposition.

[The proof of NP-completeness of Π̂[n]d for each n such that 0 ≤ n < k]

Since the condition of Π implies the NP-completeness of Π[n]d, we construct

polynomial-time transformation ϕ from Π[n]d to Π̂[n]d (Π̂[n]d ∈ NP is obvious). To do

so we can simply let ϕ be the identity. The reason is as follows. Let us consider an in-

stance of Π[n]d (which is also an instance of Π̂[n]d) and denote it by x̂ = (x, {s1, . . . , sn})
(∈ D[n]).

• If the answer of x̂ as to Π[n]d is ‘no’, then σ[n](x̂) = ∅ and therefore σ(x) =

{s1, . . . , sn}. However, since |σ(x)| = n < k, k-sets of elements of σ(x) does not

exist, thus σ̂(x) = σ(x) = {s1, . . . , sn}. As a result σ̂[n](x̂) = ∅, which means the

answer of x̂ as to Π̂[n]d is ‘no’.

• Conversely, if the answer of x̂ as to Π[n]d is ‘yes’, that is, there exists s such that

s ∈ σ[n](x̂), then s ∈ σ̂[n](x̂) also holds (The answer of x̂ as to Π̂[n]d is ‘yes’).

Therefore NP-completeness of Π̂[n]d is proven.

[The proof that Π̂[k]d is trivial]

We show that for an instance of Π̂[k]d denoted by x̂ = (x, {s1, . . . , sk}) (∈ D[k])

the set σ̂(x) has an element other than s1, . . . , sk.

• If all of s1, . . . , sk (∈ σ̂(x)) belong to σ(x), then {s1, . . . , sk} ∈ M(x) ⊆ σ̂(x),

thus the claim is satisfied.

• Suppose that some of s1, . . . , sk belong M(x) and let one of them be s1 =

{t1, . . . , tk} without loss of generality. Then t1, . . . , tk are elements of σ(x) (thus

elements of σ̂(x)). Moreover some of them are different from any of s2, . . . , sk.

Thus the claim is satisfied.

Therefore for any x̂ ∈ D[k] the answer of Π̂[k]d is ‘yes’.

We have not yet solved the problem, but we conjecture the answer is negative.

Here we state a strategy to prove this conjecture.

In the argument below, we use the notion of one-way function, a critical concept

in modern cryptography.

Definition 2.7 A function f : A → B is defined to be a one-way function if the

following hold:

• f is a bijection which is polynomially-balanced (that is, there is a positive integer

k such that |x|1/k ≤ |f(x)| ≤ |x|k for all x ∈ A).

16

• f(x) can be computed in polynomial time with respect to |x|.

• There exists n0 such that for all n > n0, all k > 0, and all polynomial-time

algorithm M ,
|{y | |y| = n and f(M(y)) = y}|

|{y | |y| = n}| ≤ 1
nk

,

that is, there is no polynomial-time algorithm which correctly computes f−1(y)

on a polynomial fraction of the inputs of length n.

Let us denote the satisfiability problem as SAT = (D, G, σ), that is, G is the set

of assignment vectors. The argument below is the on the assumption that there is a

bijection f from G to a certain set H such that f−1 is one-way (that is, f is hard to

compute).

We slightly modify SAT to SAT+N which can have arbitary number of trivial

solutions as follows:

SAT+N = (D+, G ∪N, σ+); (N is the set of nonnegative integers)

D+ = D ×N; σ+(x, n) = σ ∪ {1, . . . , n}.

That is, SAT+N is the following problem: given a pair of a CNF formula ψ and

a nonnegative integer n, return either an assignment which satisfies ψ or a positive

integer not greater than n. This problem SAT+N is ASP-complete because there is a

trivial ASP reduction from SAT (converting ψ to (ψ, 0)).

We extend f to a function f̃ from (G ∪N) to (H ∪N) as follows:

f̃(g) =





f(g) (g ∈ G)

g (g ∈ N)
.

It is easily confirmed that f̃ is a bijection and f̃−1 is also one-way.

Now we define a new problem, denoted SAT+N/f , as follows:

SAT+N/f = (D+,H ∪N, σ†),

σ†(ψ) = {f̃(g) | g ∈ σ+(ψ)}.

Then there is a trivial reduction from SAT+N to SAT+N/f . This reduction is par-

simonious, but not a polynomial-time ASP-reduction, since the one-way property of

f̃ obstructs polynomial-time transformation of solutions. However we can prove that

n-ASP of SAT+N/f is NP-complete.

Proposition 2.15 For any nonnegative integer k, SAT+N/f [k]d is NP-complete.

17

Proof The membership in NP follows from the polynomial-time computatility of

f̃−1.

We construct a polynomial-time transformation ϕ from SATd to SAT+N/f [k]d as

follows:

ϕ(ψ) = ((ψ, k), {1, . . . , k})

First we show that ϕ(ψ) is really an instance of SAT+N/f [k]. For any ψ, the solution

set of (ψ, k) as an instance of SAT+N contains {1, . . . , k}. Since f is identity about

integers, the solution set of (ψ, k) as an instance of SAT+N/f also contains {1, . . . , k},
and thus ϕ(ψ) (∈ D+

[k]) is a right instance of SAT+N/f [k]. Then using a similar

argument, we can show that

g ∈ σ(ψ) ⇐⇒ f(g) ∈ σ†[k](ϕ(ψ)) (g ∈ G),

which means ϕ is a desired transformation.

Then the problem left here is:

Problem 2.2 Is it possible to show that SAT+N/f is not ASP-complete?

Although we have not yet had a definite answer, we believe it to be unlikely that there

is an ASP reduction to SAT+N/f which does not break the one-way property of f−1.

To solve this problem is one of the future works.

18

Chapter 3

ASP-completeness Results of Puzzles

Here we prove the ASP-completeness of three modern pencil puzzles widely played

around the world.

3.1 Slither Link

Slither Link is one of the famous pencil puzzles originated in Japan. The rule of

Slither Link is as follows:

• Each problem is given as a rectangular lattice. The length of sides of the rectangle

(as to the unit length of lattice) is called the size of the problem.

• A 1 × 1 square surrounded by four points is called a cell. A cell may have a

number out of 0, 1, 2 or 3.

• The goal is to make a loop which does not intersect or branch by connecting

adjacent dots with lines, so that a number on the cell is equal to the number of

lines drawn around it.

An example of problems of Slither Link is shown in Fig. 3.1.

Here we prove the ASP-completeness of Slither Link. To construct an ASP re-

duction, we use the following lemma.

Lemma 3.1 To find a Hamiltonian circuit for a given planar graph with degree at

most 3 is ASP-complete.

Proof Seta [21] constructs a polynomial-time ASP reduction from 3SAT to this

problem. ASP-completeness of this problem is derived from the result and Theorem 2.8

We also use the following known fact (see [2]):

19

Problem
•
1
• •

3
• •

3
•

• • • •
2
• •

•
3
•
0
• • •

2
•

• • •
1
•
3
• •

•
1
• • •

3
• •

• • • • • •

-

Solution
•
1
• •

3
• •

3
•

• • • •
2
• •

•
3
•
0
• • •

2
•

• • •
1
•
3
• •

•
1
• • •

3
• •

• • • • • •

Figure 3.1: A problem of Slither Link.

u u

u

u
¤
¤
¤
¤

¢
¢

G

-

e u e

e u u

e u e

G′

Figure 3.2: A graph embedded into a grid.

Lemma 3.2 Any planar graph with degree at most 3 with n vertices can be embedded

in an O(n)×O(n) grid in polynomial time in n.

Now we are ready to state the proof.

Theorem 3.3 To find a solution to a given instance of Slither Link is ASP-complete.

Proof The membership in FNP is immediate. We construct a polynomial-time ASP

reduction from the restricted Hamiltonian circuit problem to the Slither Link problem.

Using Lemma 3.2, we can transform a given instance (graph) G of the restricted

Hamiltonian circuit problem into a graph G′ on the grid. Note that G′ has lattice

points which do not correspond to any vertex of G and thus need not be visited when

considering Hamiltonian circuits of G′. The degree of such points is two.

First, the gadget for a lattice point which need not be visited is the 6×6 board A

shown in Fig. 3.3. Here we assume that no lines are drawn around this gadget. (This

assumption will be satisfied later.) Then in this gadget lines can be drawn only on

the place shown by dotted lines in the Figure (A†). Hence there are only four points,

n, s, w and e, through which a line goes out of the gadget (we call them joint points).

Consequently, the local solution is either (i) that no lines are drawn or (ii) that a path

connecting two joint points is drawn as shown in A1, A2 and A3 (or their rotated

or mirror images). (In fact two paths can be drawn as in A4. But this case will be

20

A.
×

×
•
0

×•
0

×• ×• ×•
0

×•
0×
•

×
•
0
• • • •

0
•
0×
•

×
• • •

0
•
0
• •

×
•

×
• • •

0
•
0
• •

×
•

×
•
0
• • • • •

0×
•

×
•
0
•
0
• • •

0
•
0×
•

×• ×• ×• ×• ×• ×• •
s

n

w e

(A†)
×

×
•
0

×•
0

×
×
• ×• ×

×
•
0

×•
0×
•

×
•
0

×
×
• • •

×
•
0
•
0×
•

×
×
• • ×

×
•
0

×•
0

×
×
• ×•

×
•

×
• •

×
•
0
•
0×
• •

×
•

×
×
•
0×
• ×• ×• • ×

×
•
0×
•

×
•
0

×•
0×
• • ×

×
•
0
•
0×
•

×• ×• ×• ×• ×• ×• •
s

n

w e

A1.
×

×
•
0

×•
0

×
×
• ×• ×

×
•
0

×•
0×
•

×
•
0

×
×
• • •

×
•
0
•
0×
•

×
×
• • ×

×
•
0

×•
0

×
×
• ×•

×
•

×
• •

×
•
0
•
0×
• •

×
•

×
×
•
0×
• ×• ×• • ×

×
•
0×
•

×
•
0

×•
0×
• • ×

×
•
0
•
0×
•

×• ×• ×• ×• ×• ×• •

A2.
×

×
•
0

×•
0

×
×
• ×• ×

×
•
0

×•
0×
•

×
•
0

×
×
• • •

×
•
0
•
0×
•

×
×
• • ×

×
•
0

×•
0

×
×
• ×•

×
•

×
• •

×
•
0
•
0×
• •

×
•

×
×
•
0×
• ×• ×• • ×

×
•
0×
•

×
•
0

×•
0×
• • ×

×
•
0
•
0×
•

×• ×• ×• ×• ×• ×• •

A3.
×

×
•
0

×•
0

×
×
• ×• ×

×
•
0

×•
0×
•

×
•
0

×
×
• • •

×
•
0
•
0×
•

×
×
• • ×

×
•
0

×•
0

×
×
• ×•

×
•

×
• •

×
•
0
•
0×
• •

×
•

×
×
•
0×
• ×• ×• • ×

×
•
0×
•

×
•
0

×•
0×
• • ×

×
•
0
•
0×
•

×• ×• ×• ×• ×• ×• •

A4. (prohibited)
×

×
•
0

×•
0

×
×
• ×• ×

×
•
0

×•
0×
•

×
•
0

×
×
• • •

×
•
0
•
0×
•

×
×
• • ×

×
•
0

×•
0

×
×
• ×•

×
•

×
• •

×
•
0
•
0×
• •

×
•

×
×
•
0×
• ×• ×• • ×

×
•
0×
•

×
•
0

×•
0×
• • ×

×
•
0
•
0×
•

×• ×• ×• ×• ×• ×• •

Figure 3.3: The gadget for a point in G′ which does not correspond to a vertex

of G, and local solutions to it.

B.
×

×
•
0

×•
0

×• ×• ×•
0

×•
0×
•

×
•
0
•
0
•
1
• •

0
•
0×
•

×
• • • • •

1
•
×
•

×
• •

1
• • • •

×
•

×
•
0
•
0
• •

1
•
0
•
0×
•

×
•
0
•
0
• • •

0
•
0×
•

×• ×• ×• ×• ×• ×• •
s

n

w e

(B†)
×

×
•
0

×•
0

×
×
• ×• ×

×
•
0

×•
0×
•

×
•
0
•
0×
•
1
•
×
•
0
•
0×
•

×
×
• ×• • • ×•

1
×•
×
•

×
• •

1
• • • •

×
•

×
×
•
0

×•
0×
• •

1
×

×
•
0

×•
0×
•

×
•
0
•
0×
• •

×
•
0
•
0×
•

×• ×• ×• ×• ×• ×• •
s

n

w e

α

β

β

α

α

β

β

α

B1.
×

×
•
0

×•
0

×
×
• ×• ×

×
•
0

×•
0×
•

×
•
0
•
0×
•
1
•
×
•
0
•
0×
•

×
×
• ×• • • ×•

1
×•
×
•

×
• •

1
• • • •

×
•

×
×
•
0

×•
0×
• •

1
×

×
•
0

×•
0×
•

×
•
0
•
0×
• •

×
•
0
•
0×
•

×• ×• ×• ×• ×• ×• •

B2.
×

×
•
0

×•
0

×
×
• ×• ×

×
•
0

×•
0×
•

×
•
0
•
0×
•
1
•
×
•
0
•
0×
•

×
×
• ×• • • ×•

1
×•
×
•

×
• •

1
• • • •

×
•

×
×
•
0

×•
0×
• •

1
×

×
•
0

×•
0×
•

×
•
0
•
0×
• •

×
•
0
•
0×
•

×• ×• ×• ×• ×• ×• •

B3.
×

×
•
0

×•
0

×
×
• ×• ×

×
•
0

×•
0×
•

×
•
0
•
0×
•
1
•
×
•
0
•
0×
•

×
×
• ×• • • ×•

1
×•
×
•

×
• •

1
• • • •

×
•

×
×
•
0

×•
0×
• •

1
×

×
•
0

×•
0×
•

×
•
0
•
0×
• •

×
•
0
•
0×
•

×• ×• ×• ×• ×• ×• •

Figure 3.4: The gadget for a vertex of G′ which corresponds to a vertex of G,

and local solutions to it.

prohibited later by the condition on the degree.) Note that for any two joint points

there is a unique way to connect them.

Next, the gadget for a lattice point which must be visited is the board B shown

in Fig. 3.4. Again we assume no lines around the gadget. The place where lines can

21

C.

• • • • • • • • • • • • • •

• • • • • • • • • • • • • •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

0
0

0
0

0
0

0
0

×
×
×
×
×
×

×
×
×
×
×
×

×
×
×

×
×
×

×
×
×

×
×
×

0
0

0
0

×
×
×

×
×
×

0
0×

D.

• • • • • • • • • • • • • •

• • • • • • • • • • • • • •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

0
0

0
0

0
0

0
0

×
×
×
×
×
×

×
×
×
×
×
×

×
×
×

×
×
×

×
×
×

×
×
×

0
0

0
0

×
×
×

×
×
×

Figure 3.5: How to join gadgets.

be drawn is shown in the Figure (B†). (Here a line marked α is used only when the

path goes out of the gadget straightly through the line, and a line marked β is used

otherwise.) This time a path connecting two points on the boundary must be drawn,

as in B1, B2 and B3, because this gadget has some 1’s inside. Note that for any two

joint points there is a unique way to connect them.

Last, we arrange these two sorts of gadgets in accordance with the grid graph

G′: we join two gadgets as in C of Fig. 3.5 where G′ has a corresponding edge, and

as in D where not. Only D allows a path connecting two gadgets. Moreover, both

arrangements forbid lines on the boundary of the gadgets. (In this figure only one

side seems to be forbidden to have lines. However, in the entire construction a gadget

usually has adjoining gadgets in all the directions. Moreover drawing lines on the

boundary of the entire board is also forbidden, since lines cannot go out of the board.)

Because all vertices of G′ have a degree at most three, not all of n, s, w and e of a

gadget A can have a passing line. This restriction prevents two paths passing through

a gadget A.

In this way, we obtain the problem of Slither Link corresponding to G′ (that is,

G). (An example of the overall construction is shown in Fig. 3.1.) This transformation

can be done in polynomial time in the input size, and the solution of Slither Link cor-

responding to a Hamiltonian circuit of G is unique and also computable in polynomial

time. Thus a polynomial time ASP reduction from the restricted Hamiltonian circuit

problem to Slither Link is constructed.

3.2 Number Place

The rule of Number Place (also known as Sudoku in Japan) is as follows:

• A problem is given as a n2 × n2 grid, which is divided into n × n squares with

thick border lines. The value n is called order.

22

e u e

e u u

e u e

G′

-

·0·0· · ·0·0·0·0·0· · ·0·0·0·0·0· · ·0·0··0· · · ·0·0·0·0·0·1· ·0·0·0·0· · · ·0·0·· · ·0·0· · · · · · · ·1· · · · ·0·0· · ·· · ·0·0· · · · ·1· · · · · · · ·0·0· · ··0· · · · ·0·0·0·0· ·1·0·0·0·0· · · · ·0··0·0· · ·0·0·0·0·0· · ·0·0·0·0·0· · ·0·0··0·0· · ·0·0· ·0·0· · ·0·0· ·0·0· · ·0·0··0·0· · ·0·0·0·0·0· · ·0·0·0·0·0· · ·0·0··0· · · ·0·0·0·0·0·1· ·0·0·0·0·0·1· ·0·0·· · ·0·0· · ·0· · · · ·1· · · · · · ·1· ·· · ·0·0· · ·0· ·1· · · · · · ·1· · · · ··0· · · · ·0·0·0·0· ·1·0·0·0·0·0· ·1·0·0··0·0· · ·0·0·0·0·0· · ·0·0·0·0·0· · ·0·0··0·0· · ·0·0· ·0·0· · ·0·0· ·0·0· · ·0·0··0·0· · ·0·0·0·0·0· · ·0·0·0·0·0· · ·0·0··0· · · ·0·0·0·0·0·1· ·0·0·0·0· · · ·0·0·· · ·0·0· · · · · · · ·1· · · · ·0·0· · ·· · ·0·0· · · · ·1· · · · · · · ·0·0· · ··0· · · · ·0·0·0·0· ·1·0·0·0·0· · · · ·0··0·0· · ·0·0·0·0·0· · ·0·0·0·0·0· · ·0·0·· ·

Figure 3.6: An example of the overall construction of reduction.

Problem
4

3 2
1 3

4

-

Solution
1 2 3 4
3 4 2 1
2 1 4 3
4 3 1 2

Figure 3.7: A problem of Number Place.

• Some cells are filled with an integer from 1 through n2.

• The goal is to fill in all the blank cells so that each row, column and n×n square

has each of integers from 1 through n2 exactly once.

An example of Number Place problems is shown in Fig. 3.7.

To show the ASP-completeness of this puzzle, we use the result about Latin

squares. A Latin square of order n is a matrix such that each row and column con-

tains each of integers from 1 through n exactly once. (Similar to Number Place, but

lacking of the “small square” condition.) A partial Latin square is a matrix with

some blank entries such that each row and column contains each of integers from 1

through n at most once. The problem of partial Latin square completion is as fol-

lows: Given a partial Latin square, make a Latin square by filling in the blanks. The

ASP-completeness of this problem is immediate from known results.

Theorem 3.4 The problem of partial Latin square completion is ASP-complete.

23

A0 01 02 B0 11 12 C0 21 22

D0 11 12 E0 21 22 F0 01 02

G0 21 22 H0 01 02 I0 11 12

01 02 10 11 12 20 21 22 00

11 12 20 21 22 00 01 02 10

21 22 00 01 02 10 11 12 20

02 10 11 12 20 21 22 00 01

12 20 21 22 00 01 02 10 11

22 00 01 02 10 11 12 20 21

A B C
D E F
G H I

Figure 3.8: Relation between Number Place and Latin square (in the case

n = 3): Integers in Number Place are represented in base n. Although the cells

with A0, . . . , I0 are in actual problems blank, the lower digit of the numbers

filling these cells must be 0 from the rule of Number Place. Moreover, the

square on the right forms a Latin square.

Proof Colbourn [4] has proved the NP-completeness of ASP of partial Latin square

completion by showing a reduction from 1-in-4 SAT to this problem. The reduction

he used is what we call ASP reduction here. The ASP-completeness of 1-in-4 SAT is

proven in an analogous way to that of 1-in-3 SAT.

More we show the next lemma which shows a relation between the two problems.

In the argument below, we use integers ranged from 0 (instead of 1) as row and

column numbers and contents of cells, and write S(i, j) for the entry at position (i, j)

of a square S (⊥ means a blank).

Lemma 3.5 Let S be a Number Place problem of order n such that

S(i, j) =




⊥ (when (i, j) ∈ B)

((i mod n)n + bi/nc+ j) mod n2 (otherwise)

where B = {(i, j) | bi/nc = 0 and (j mod n) = 0}. Then a square S′ obtained by filling

in the blanks of S is a solution to S if and only if

• For any (i, j) ∈ B, S′(i, j) mod n equals 0.

• A square L defined by L(i, j/n) = S′(i, j)/n for all (i, j) ∈ B is a Latin square.

(as shown in Fig. 3.8)

Proof First of all we show the following proposition:

The square S0 defined by

S0(i, j) = ((i mod n)n + bi/nc+ j) mod n2

24

forms a solution to Number Place. That is. each row, column and small square

contains each of integers from 0 through n2 − 1 exactly once.

Let il = (i mod n) and ih = bi/nc. Then, when i ranges over 0 through n2 − 1, (il, ih)

takes all pairs consisting of two integers from 0 through n− 1. The same holds for j,

and

S0(i, j) = (iln + ih + jhn + jl) mod n2.

First we fix j, that is, look at a certain column), and then S0(i, j) = S0(i′, j) implies

iln + ih ≡ i′ln + i′h (mod n2), which means from the argument above (il, ih) = (i′l, i
′
h),

i. e., i = i′. That means no integer appeans twice in a column. The same holds for a

row. In order to think of a small square we fix ih and jh, and then S0(i, j) = S0(i′, j′)

implies iln + jl ≡ i′ln + j′l (mod n2), which means (il, jl) = (i′l, j
′
l), i. e., i = i′, j = j′.

Therefore the proposition is proved.

Next we consider which integer fills the blank cells (cells belonging to B) in S.

For (i, j) ∈ B, S0(i, j) equals n(il + jh) mod n2 and thus is divisible by n. Since each

integer appears as many times in S0 as in S′, integers which fill blanks of S must also

be divisible by n.

Last we will show the relation to L. We only have to think of cells of B (about

the other cells the condition is already satsfied). The row constraint of S′ requires

that

S′(i, j) = S′(i, j′) =⇒ j = j′. (3.1)

However, as far as B is concerned, j = j′ ⇐⇒ jh = j′h and S′(i, j) = S′(i, j′) ⇐⇒
L(i, jh) = L(i, j′h). Thus (3.1) is equivalent to

L(i, jh) = L(i, j′h) =⇒ jh = j′h, (3.2)

which is the row constraint of the Latin square L. Similarly the column constraint

of S′ turns out to be equivalent to the column constraint of L. The small-square

constraint of S′ is also equivalent to the column constraint of L. Now the proof is

completed.

Now we are ready to state the proof.

Theorem 3.6 To find a solution to a given instance of Number Place is ASP-

complete.

Proof The membership in FNP is immediate. We show a polynomial time ASP

reduction from the problem of partial Latin square completion to Number Place.

25

1 2
2

0

-

10 01 02 20 11 12 21 22

11 12 21 22 20 01 02

21 22 00 01 02 11 12

01 02 10 11 12 20 21 22 00

11 12 20 21 22 00 01 02 10

21 22 00 01 02 10 11 12 20

02 10 11 12 20 21 22 00 01

12 20 21 22 00 01 02 10 11

22 00 01 02 10 11 12 20 21

Figure 3.9: An example of the overall construction of reduction.

For a given partial Latin square L of order n, we construct a Number Place

problem S as follows:

S(i, j) =





L(i, j/n) · n ((i, j) ∈ B, L(i, j/n) 6= ⊥)

⊥ ((i, j) ∈ B, L(i, j/n) = ⊥)

((i mod n)n + bi/nc+ j) mod n2 (otherwise)

(B is defined samely as in Lemma 3.5.) This construction can be done in polynomial

time in the input size. Moreover, from Lemma 3.5, each solution to L has a unique

corresponding solution to S, which is also polynomial-time computable. Thus the

desired polynomial-time ASP reduction is obtained.

3.3 Fillomino

The rule of Fillomino is as follows:

• A problem is given as a rectangular grid, with some cells filled with positive

integers. The length of sides of the rectangle is called the size of the problem.

• The goal is to fill each blank cell with a integer and divide the board into several

blocks so that

– each block consists of one or more consecutive cells (forms a polyomino),

– all the cells in a block are filled with the same integer, which equals to the

area of the block,

– blocks with the same area do not share their edges.

An example of Fillomino is shown in Fig. 3.10.

In order to show the ASP-completeness of Fillomino we use a reduction from a

planar version of 3SAT defined as follows:

26

Problem
6 2 2

3 6 3
3 1

2 3 4 2
2 3

5 1 4
4 3 3

Solution
6 6 6 2 2 3 2
3 3 6 6 6 3 2
3 2 3 3 1 3 1
1 2 3 5 4 2 2
2 5 5 5 4 4 3
2 5 4 1 3 4 3
4 4 4 3 3 1 3

Figure 3.10: A problem of Fillomino.

Definition 3.1 Let φ be a 3-CNF formula which has the variable set X = {x1, . . . , xn}
and the clause set C = {c1, . . . , cm}. The bipartite graph associated with φ, denoted

by G(φ), is defined as follows:

G(φ) = (X ∪ C, E); E = {(vi, cj) | vi or v̄i appears in cj}.

The problem of planar 3SAT is defined to be the satisfiability problem about a

3-CNF formula φ where G(φ) is planar.

Planar 3SAT is introduced and proved to be NP-complete in [13]. Moreover,

ASP-completeness of thie problem can be derived from the known result.

Lemma 3.7 Planar 3SAT is ASP-complete.

Proof An ASP reduction from 3SAT to planar 3SAT is presented in [10]. The ASP-

completeness of planar 3SAT is derived from the result and the ASP-completeness of

3SAT.

The graph associated with a formula can be easily transformed to a logical circuit

in the following way: replace a ‘variable’ vertex by an input node and a ‘clause’

vertex by a OR gate, and then optionally insert a NOT gate between an input node

and a OR gate. If the original graph is planar, the resulting cirxuit is also planar.

Moreover the output of the OR gates for an input is all ‘true’ if and only if the input

satisfies the Boolean formula. Therefore the problem of planar 3SAT can be viewed as

satisfiability problem of planar multi-output circuits where all outputs must be ‘true’.

Our reduction exploits this characterization. (Similar approach is taken in [12].)

Theorem 3.8 To find a solution to a given instance of Fillomino is ASP-complete.

Proof The membership in FNP is immediate. We show a polynomial time ASP

reduction from planar 3SAT to Fillomino.

27

2 2 2 2

- (True)

1 2 2 1 2 2 1 2 2 1 2 2

(False)

2 2 1 2 2 1 2 2 1 2 2 1

Figure 3.11: A straight wire.

As is seen from the argument above all we have to do is represent a planar multi-

output circuit as an instance of Fillomino, where an input which makes all outputs

‘true’ corresponds to a solution of the Fillomino problem. Such a circuit can be

constructed from the following components: wires carrying signals (truth values), input

and output nodes, signal splitters, NOT gates and AND gates. (Since the circuit is

planar, we need not consider crossover of wires.)

We will construct a gadget for each component, but before doing it we explain

how to treat cells of the Fillomino problem which is not involved in the representation

of the circuit. In the construction described below, such cells are expressed as gray

cells. However, in actual construction, these cells must be filled with appropriate

integers. That is, each of these cells must be filled with the number of cells contained

in the connected component of cells irrelevant to the circuit including the cell in the

transformed problem of Fillomino. In many cases such integers are very large. In

particular we can presume that all such integers be larger than three. On the other

hand as to cells which form gadgets we will only use integers not larger than three, so

that no collision can occur.

Firstly, Fig. 3.11 represents a straight wire. This gadget has two local solutions,

one corresponding to ‘true’ and one corresponding to ‘false’. We decide the corespon-

dence as follows. We first think of wires as given the orientation from input to output

(shown as an arrow in the figure). Then we decide a wire to be carrying ‘true’ when 2’s

which are newly filled in the solution are put in front of the 2’s given in the problem

(we call them basis 2’s and show them in bold face in the figure), and ‘false’ when new

2’s in the solution are put behind the basis 2’s.

Fig. 3.12 shows the gadget for an input node. This gadget has two local solutions.

That means we can send either ‘true’ or ‘false’ from the node.

28

2 2

- (True)

1 2 2 1 2 2

(False)

2 2 1 2 2 1

Figure 3.12: An input node.

2 2 2

- (True)

1 2 2 1 2 2

Figure 3.13: An output node.

2 2 3 2 2
1 3 1

- (True)

1 2 2 1 2 2 3 3 2 2 1 2 2
1 3 1

(False)

2 2 1 2 2 3 3 2 2 1 2 2 1
1 3 1

Figure 3.14: A phase changer.

Fig. 3.13 shows the gadget for an output node. The condition that all outputs

must be ‘true’ is realized by the gadget forcing the ‘true’ configuration.

Next we want to construct logical gates, but there is a problem. The basis 2’s in

a wire appear periodically, which fact imposes unwanted restriction to arrangement of

gadgets. To resolve this difficulty, we use the gadget shown in Fig. 3.14, which cancels

the periodicity.

Fig. 3.15 shows the gadget to split a signal into two wires. The repeated use of

this gadget allows a signal splitted into more wires. This gadget can be used to bend

a single wire. In this case the unused wire is terminated by the gadget which is the

same as Fig. 3.12 except that the orientation is reversed.

29

[X = V = V ′]

2
3

2 2 3
3

2

-X

6V

?V ′

(True)

1
2
2
1 3

1 2 2 1 2 2 3
1 3
2
2
1

(False)

2
1
2
2 3

2 2 1 2 2 1 3
2 3
2
1
2

Figure 3.15: A signal splitter.

[¬X = V]

1 1
2 2 3 2 2

3

-
X

-
V (¬T = F)

1 1
1 2 2 1 2 2 3 2 2 1 2 2 1

3
1 3 1

(¬F = T)

1 1
2 2 1 2 2 3 3 3 2 2 1 2 2

1
3 3 3

Figure 3.16: NOT gate.

Fig. 3.16 is a NOT gate. The output V is the negation of the input X.

Lastly, Fig. 3.17 is an OR gate. When either of two inputs is ‘true’, only three or

four cells are left around the cell with 3 (including the cell itself), and that fact forces

the output configuration to be ‘true’. On the other hand, when both of two inputs are

‘false’, five cells are left around the 3, which fact makes the output ‘false’.

By arranging these gadgets, we can transform an instance of planar 3SAT to a in-

stance of Fillomino. This transformation can be done in polynomial time with respect

30

[X ∪ Y = V]

2

2
1

2 2 3 2

-X ?

Y

-V

(T ∪ T = T)

1
2
2
1
2

1 2
1 2 2 1 2 2 3 3 2 2 1

3

(T ∪ F = T)

2
2
1
2
2

1 3
1 2 2 1 2 2 3 3 2 2 1

1

(F ∪ T = T)

1
2
2
1
2

1 2
2 2 1 2 2 3 3 3 2 2 1

1

(F ∪ F = T)

2
2
1
2
2

1 3
2 2 1 2 2 3 3 2 2 1 2

1

Figure 3.17: OR gate.

to the input size. Moreover, each gadget has a unique local solution correspoding to

the specified input-output pattern. Thus the solution to the constructed Fillomino

problem corresponding to a solution to planar 3SAT is unique and polynomial-time

computable. Therefore an polynomial-time ASP reduction from planar 3SAT to Fil-

lomoino is obtained.

3.4 Some Other Puzzles

Because Seta’s results [20] on the NP-completeness of n-ASP of puzzles are based

on ASP reductions, they can be easily extended to ASP-completeness, in combination

with ASP-completeness of basic problems he used as the reduction source.

31

Theorem 3.9 To find a solution to a given instance of Cross Sum is ASP-complete.

Proof Seta [21] gives a polynomial-time ASP reduction from 1-in-3 SAT to Cross

Sum. ASP-completeness of Cross Sum is derived from the result and Theorem 2.9.

Theorem 3.10 To find a solution to a given instance of Cross Sum is ASP-complete.

Proof Ueda and Nagao [22] gives a polynomial-time ASP reduction from 3DM to

Nonogram. The reduction from 3SAT to 3DM given in [14] can be easily modified to

make it a polynomial-time ASP reduction. Thus ASP-completeness of Nonogram is

obtained from Theorem 2.8.

32

Chapter 4

Concluding Remarks

We formalized n-ASP, the problem to find another solution when n solutions are

given, to facilitate strict investigations on its complexity. In particular, we introduced

ASP-completeness, the completeness with respect to ASP reductions, and proved that

ASP-completeness implies the NP-completeness of n-ASP for any nonnegative integer

n. This result is useful in the following aspects:

• For most of the known NP-complete problems, their counting version is shown

to be #P-complete.

• Moreover, in most cases, the proof of #P-completeness is done by construct-

ing a bijection of solutions concretely, and thus such proof also proves ASP-

completeness.

• As a result, it can be said that most of the NP-complete problems are ASP-

complete (as a function problem) and their n-ASPs are NP-complete. All you

have to do for most cases is inspect the proof of #P-completeness and check if

the transformation of solutions is computable in polynomial-time.

In short, the notion of ASP-completeness provides an easy way to prove the NP-

completeness of ASP of a problem.

Moreover we investigated the relation between ASPs and other versions of prob-

lems, namely counting problems and enumeration problems. There we showed the

following:

• ASP-completeness implies #P-completeness but the converse does not hold.

• The class of problems of which n-ASP is solvable in polynomial time is equal to

the class of problems which allow enumerations of solutions in polynomial time

in a sense.

33

On the other hand one question of interest, whether the NP-completeness of n-

ASP for all n implies ASP-completeness or not, was left open as future work, although

we provided some strategy to prove that the proposition was false.

As an application to the field of combinatorial puzzles, we proved the ASP-

completeness of three popular puzzles: Slither Link, Number Place, and Fillomino.

These results indicate that designing these sorts of puzzles, as well as solving, is es-

sentially difficult. We hope that more ASP-completeness results will appear.

34

References

[1] H. Adachi, H. Kamekawa, and S. Iwata. Shogi on n × n board is complete in

exponential time. Trans. IEICE, J70-D(10):1843–1852, 1987. (in Japanese).

[2] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Algorithms for drawing

graphs: an annotated bibliography. Computational Geometry, 4(5):235–284, 1994.

[3] T. C. Biedl, E. D. Demaine, M. L. Demaine, R. Fleischer, L. Jacobsen, and J. I.

Munro. The complexity of Clickomania. In R. J. Nowakowski, editor, More Games

of No Chance, pages 389–404. Cambridge University Press, 2002. Collection of

papers from MSRI Combinatorial Game Theory Research Workshop, Berkeley,

California, July, 2000.

[4] C. J. Colbourn, M. J. Colbourn, and D. R. Stinson. The computational complexity

of recognizing critical sets. In Graph theory, Singapore 1983, number 1073 in

Lecture Notes in Math., pages 248–253. Springer, 1984.

[5] E. D. Demaine. Playing games with algorithms: Algorithmic combinatorial game

theory. Computing Research Repository, arXiv:cs.CC/0106009, 2002. (available

at http://arXiv.org/).

[6] E. D. Demaine, S. Hohenberger, and D. Liben-Nowell. Tetris is hard, even to ap-

proximate. Computing Research Repository, arXiv:cs.CC/0106009, 2002. (avail-

able at http://arXiv.org/).

[7] D. Eppstein. On the NP-completeness of cryptarithms. SIGACT News, 18(3):38–

40, 1987.

[8] A. S. Fraenkel and D. Lichtenstein. Computing a perfect strategy for n×n chess

requires time exponential in n. J. of Combinatorial Theory, Series A, 31:199–214,

1981.

35

[9] M. R. Garey, D. S. Johnson, and R. Endre Tarjan. The planar Hamiltonian circuit

problem is NP-complete. SIAM Journal on Computing, 5(4), 1976.

[10] H. B. Hunt III, M. V. Marathe, V. Radhakrishnan, and R. E. Stearns. The com-

plexity of planar counting problems. SIAM Journal on Computing, 27(4):1142–

1167, 1998.

[11] S. Iwata and T. Kasai. The othello game on an n×n board is PSPACE-complete.

Theoretical Computer Science, 123:329–340, 1994.

[12] R. Kaye. Minesweeper is NP-complete. Mathematical Intelligencer, 22(2):9–15,

2000.

[13] D. Lichtenstein. Planar formulae and their uses. SIAM Journal on Computing,

11:329–343, 1982.

[14] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[15] D. Ratner and M. Warmuth. Finding a shortest solution for the N ×N -extension

of the 15-puzzle is intractable. J. Symb. Comp., 10:111–137, 1990.

[16] S. Reisch. Gobang ist PSPACE-vollständig. Acta Informatica, 13:59–66, 1980.

[17] J. M. Robson. The complexity of Go. In Proceeding of the IFIP 9th World

Computer Congress on Information Processing, pages 413–417, 1983.

[18] J. M. Robson. N by N checkers is EXPTIME-complete. SIAM Journal on

Computing, 13(2):252–267, 1984.

[19] T. Saito. An algorithm for automatic generation of the Slither Link problems.

Senior thesis, Department of Infomation Science, the Faculty of Science, the Uni-

versity of Tokyo, 1998.

[20] T. Seta. The complexities of CROSS SUM. IPSJ SIG Notes AL-84, pages 51–58,

2002. (in Japanese).

[21] T. Seta. The complexities of puzzles, CROSS SUM and their another solution

problems (ASP). Senior Thesis, Department of Infomation Science, the Faculty

of Science, the University of Tokyo, 2002.

[22] N. Ueda and T. Nagao. NP-completeness results for NONOGRAM via parsimo-

nious reductions. Technical Report TR96-0008, Department of Computer Science,

Tokyo Institute of Technology, 1996.

36

[23] R. Uehara and S. Iwata. Generalized Hi-Q is NP-complete. Trans. IEICE,

E73(2):270–273, 1990.

[24] T. Uno. Algorithms for enumerating all perfect, maximum and maximal

matchings in bipartite graphs. In Algorithms and Computation (Proceeding of

ISAAC97), number 1350 in Lecture Notes in Computer Science, pages 92–101.

Springer, 1997.

[25] L. G. Valiant. The complexity of computing the permanent. Theoretical Computer

Science, 8(2):189–201, 1979.

[26] T. Yato. On the NP-completeness of the Slither Link puzzle. IPSJ SIG Notes

AL-74, pages 25–32, 2000. (in Japanese).

[27] T. Yato and T. Seta. Complexity and completeness of finding another solution

and its application to puzzles. Trans. IEICE, E86-A(5), 2003. to appear.

37

