Algorithm Theory

Georg Moser Mircea Dan Hernest

Institute of Computer Science @ UIBK

Summer 2007

GM LVA 703608 (week 1) 1/14

Organisation Content Algorithm and Problems Worst-Case Analysis Networks Problem: TSP

Schedule

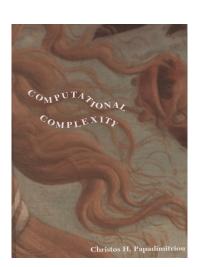
week 1	March 5	week 9	May 14
week 2	March 12	week 10	May 21
week 3	March 19	week 11	June 4
week 4	March 26	week 12	June 11
week 5	April 16	week 13	June 18
week 6	April 23	week 14	June 25
week 7	April 30	first exam	July 2
week 8	May 7		

2/14

Literature & Online Material

Literature

Papadimitriou, Christo, Computational Complexity (Addison-Wesley, 1994)



Online Material

Transparencies and homework are available from IP starting with 138.232; solution to selected exercises will be available online after they have been discussed.

GM LVA 703608 (week 1) 3/14

Organisation

Content

Algorithm and Problems

Worst-Case Analysis

Networks

Problem: TSP

4/14

Exams and Exercises

- → lecture is a VU, i.e., "Vorlesung" and "Übung" are combined
- → we offer 3 exercise groups
- mid-term test (45 min) on May 4 (covers the material of first 7 weeks)
- → let E denote the exam result, T the test result; the final grade is computed as

 $\max\{E, \lceil \frac{2}{3} \cdot E + \frac{1}{3} \cdot T \rceil\}$

Exercise Groups

UE Group 1 Friday 12.15-13.00, SR 12 Georg Moser Group 2 Friday 12.15-13.00, HS 10 Dan Hernest

Group 3 Friday 13.15-14.00, HS 10 Dan Hernest

GM LVA 703608 (week 1)

Organisation Content Algorithm and Problems Worst-Case Analysis Networks Problem: TSP

Content

VV T	introduction, Problems and Algorithms
W 2	Turing machines as algorithms, multiple-string TMs
W 3	Random access machines, nondeterministic machines
W 4	Complexity classes, The Hierarchy Theorem
W 5	The reachability method, Savitch's Theorem
W 6	Reductions, completeness, Cook's Theorem
W 7	Logical characterisations, Fagin's Theorem
W 8	NP-complete problems, Variants of SAT
W 9	Graph-theoretical problems, Sets and numbers
W 10	coNP, Pratt's Theorem
W 11	Function problems
W 12	Randomised Computation
W 13	Circuit Complexity
W 14	Approximability
111111111111111111111111111111111111111	PV - M SPA PP- IIII

GM LVA 703608 (week 1) 5/14

Organisation Content Algorithm and Problems Worst-Case Analysis Networks Problem: TSP

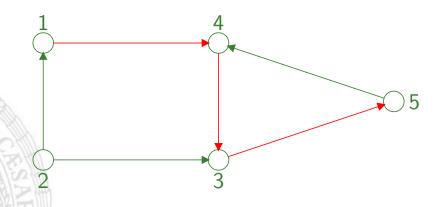
Problem: REACHABILITY

A (directed) graph G = (V, E) is a finite set V of nodes and a set E of edges, which are pairs of nodes.

Problem

Given a graph G and nodes $1, n \in V$, is there a path between 1 and n? This problem is called REACHABILITY.

Example



6/14

GM LVA 703608 (week 1)

Algorithm

- ightharpoonup mark 1, set $S := \{1\}$
- ightharpoonup Choose $i \in S$, remove i from S
 - ightharpoonup For all $(i,j) \in E$ and j unmarked, mark j, add j to S
- → Iterate till S is empty.
- → Answer "yes" if n is marked, otherwise "no"

Fact: The (time) complexity of the search algorithm is $\mathcal{O}(n^2)$; search can be depth-first or breadth-first.

Definition

f, g functions from \mathbb{N} to \mathbb{N} .

- $\Rightarrow f(n) = \mathcal{O}(g(n)), \ \exists c, n_0 \ge 1 \ \forall n \ge n_0 \ (f(n) \le c \cdot g(n))$
- $ightharpoonup f(n) = \Omega(g(n)), \text{ if } g(n) = \mathcal{O}(f(n))$
- $f(n) = \Theta(g(n))$, if $f(n) = \mathcal{O}(g(n))$ and $f(n) = \Omega(g(n))$

M LVA 703608 (week 1) 7/14

Organisation

Content

Algorithm and Problems

Worst-Case Analysis

Networks

Problem: TSP

Worst-Case Analysis

We deal with growth rates only and regard polynomial growth rates as acceptable, while exponential growth rates are intractable.

Only worst-case analysis; average case analysis would be better, but

- what is the input distribution of a problem?
- what happens if we are interested in the worst-case?

Motto

Adopting polynomial worst-case performance as our criterion of efficiency results in an elegant and useful theory that says something meaningful about practical computation, and would be impossible without this simplification.

Networks

Fact: The space requirements of the Dijkstra algorithm is $\mathcal{O}(n)$. Can be improved to $\mathcal{O}((\log n)^2)$.

- ightharpoonup a network N=(V,E,s,t,c) is a graph with source s and sink t
- ightharpoonup if $(i,j) \in E$, then c(i,j) > 0 is the capacity
- ightharpoonup a flow f assigns non-negative integers to edges, s.t. $f(i,j) \leq c(i,j)$
- \rightarrow for each node j (except s, t)

$$\sum_{(i,j)\in E} f(i,j) = \sum_{(j,k)\in E} f(j,k) .$$

 \Rightarrow the value of the network is $\sum_{(s,s')\in E} f(s,s')$

GM LVA 703608 (week 1) 9/14

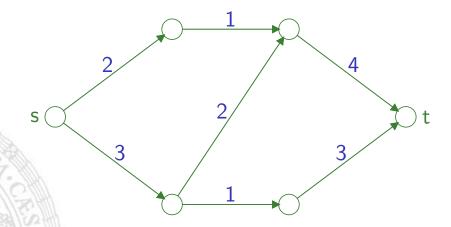
Organisation Content Algorithm and Problems Worst-Case Analysis Networks Problem: TSP

Problem: MAX FLOW

- → MAX FLOW is the problem to find the flow with the largest value
- → MAX FLOW(D) is the related decision problem
- MAX FLOW and MAX FLOW(D) are polynomial equivalent

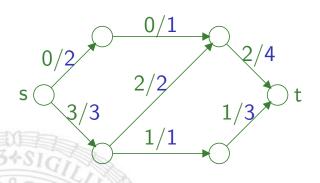
Example

GM



we define the derived network N(f) = (V, E', s, t, c')

$$E' := E - \{(i,j) \mid f(i,j) = c(i,j)\}\} \cup \cup \{(j,i) \mid (i,j) \in E \text{ and } f(i,j) > 0\}$$
 $c'(i,j) := c(i,j) - f(i,j) \text{ for old edges}$
 $c'(i,j) := f(j,i) \text{ for new edges}$



 $\frac{2}{3}$

network N

derived network N(f)

⇒ assume there exists f' with f' greater than f: $\Delta f = f' - f$ is positive flow in N(f)

GM LVA 703608 (week 1) 11/14

Organisation Content Algorithm and Problems Worst-Case Analysis Networks Problem: TSP

Algorithm

- 1 start with zero-flow in N.
- 2 construct N(f)
 - → if there is a path from s to t: find the smallest capacity c' on the path and add it to the flow
 - employ algorithm for REACHABILITY
 - → Repeat, until no path can be found

Complexity

- \rightarrow at most $n \cdot C$ iterations, where C is the maximal capacity
- ightharpoonup implies time complexity: $\mathcal{O}(n^2 \cdot nC) = \mathcal{O}(n^3C)$
- **DANGER**: C depends exponential on any succinct representation of the input
- \longrightarrow more thought (i.e. using the shortest path) yields $\mathcal{O}(n^5)$
- \rightarrow reducible to $\mathcal{O}(n^3)$

TSP

 \rightarrow given *n* cities, with positive distance d_{ij} , s.t. $d_{ij} = d_{ji}$

what is the fastest tour of the cities, i.e. minimise

$$\sum_{i=1}^n d_{\pi(i),\pi(i+1)}$$
 for permutation π with $\pi(n+1)=\pi(1)$

- the problem is called TSP
- → the (polynomially) related decision problem: TSP(D)

Naive Algorithm

enumerate all possible solutions; compute the costs; pick the best

Fact: Time bound: $\mathcal{O}(n!)$, Space bound: $\mathcal{O}(n)$ This bound can be improved slightly, but remains exponential

GM LVA 703608 (week 1) 13/14

Organisation Content Algorithm and Problems Worst-Case Analysis Networks Problem: TSP

P vs NP

Definition (informal)

- 1 the complexity class P contains all feasible problems
- NP contains all problems that are feasible on a machine that can guess

we will see that TSP can be solved in polynomial time if we allow a non-deterministic algorithm

- no clever way of removing non-determinism is known
- in fact if you find a polynomial-time algorithm you can win \$1 million:

The Board of Directors of CMI [Clay Mathematics Institute] designated a \$1 million prize fund for the solution to this problem.

ightharpoonup latest conjecture: $\mathbf{P} \neq \mathbf{NP}$ proven in 2050 (Natarajan Shankar)