Organisation Content	Algorithm and Problems	Worst-Case Analysis	Networks	Problem: TSP	Organisation	Content	Algorithm and Problems	Worst-Case Analysis	Networks	Problem: TSP
					Sche	dule				
	Algorith Georg Moser	<mark>nm Theory</mark> Mircea Dan Herne	st				week 1 March 5 week 2 March 12 week 3 March 19 week 4 March 26	week 9 week 10 week 11 week 12	May 14 May 21 June 4 June 11	
Institute of Computer Science @ UIBK				week 5 April 16 week 13 week 6 April 23 week 14 week 7 April 30 first exam week 8 May 7	June 18 June 25 July 2					
GM Organisation Content	LVA 70360 Algorithm and Problems	8 (week 1) Worst-Case Analysis	Networks	1/14 Problem: TSP	GM Organisation	Content	LVA 70360 Algorithm and Problems	18 (week 1) Worst-Case Analysis	Networks	2/14 Problem: TSP
Literature & Online Material Literature Papadimitriou, Christo, Compu-			 Exams and Exercises lecture is a VU, i.e., "Vorlesung" and "Übung" are combined we offer 3 exercise groups mid-term test (45 min) on May 4 (covers the material of first 7 weeks) 							
tational Complexity (Addison- Wesley, 1994)			⇒ let <i>E</i> denote the exam result, <i>T</i> the test result; the final grade is computed as $\max\{E, \lceil \frac{2}{3} \cdot E + \frac{1}{3} \cdot T \rceil\}$							
0nline Material					Exerc	cise Grou	ps			
Transparencies at 138.232; solutio have been discus	nd homework are a n to selected exerc sed.	available from IP s cises will be availa	starting w ble online	ith after they	UE	Group 1 Group 2 Group 3	Friday 12.15-13.0 Friday 12.15-13.0 Friday 13.15-14.0	00, SR 12 Geo 00, HS 10 Da 00, HS 10 Da	org Moser n Hernest n Hernest	
GM	LVA 70360	18 (week 1)		3/14	GM		LVA 70360	08 (week 1)		4/14

Algorithm

- → mark 1, set $S := \{1\}$
- → Choose $i \in S$, remove i from S
 - For all $(i, j) \in E$ and j unmarked, mark j, add j to S
- \rightarrow Iterate till S is empty.
- Answer "yes" if *n* is marked, otherwise "no"

Fact: The (time) complexity of the search algorithm is $O(n^2)$; search can be depth-first or breadth-first.

Definition

GM

f, g functions from \mathbb{N} to \mathbb{N} . $\Rightarrow f(n) = \mathcal{O}(g(n)), \exists c, n_0 \ge 1 \ \forall n \ge n_0 \ (f(n) \le c \cdot g(n))$ • $f(n) = \Omega(g(n))$, if $g(n) = \mathcal{O}(f(n))$ \Rightarrow $f(n) = \Theta(g(n))$, if $f(n) = \mathcal{O}(g(n))$ and $f(n) = \Omega(g(n))$

LVA 703608 (week 1)

A (directed) graph G = (V, E) is a finite set V of nodes and a set E of

Networks

Problem: TSP

Given a graph G and nodes $1, n \in V$, is there a path between 1 and n?

Worst-Case Analysis

We deal with growth rates only and regard polynomial growth rates as acceptable, while exponential growth rates are intractable.

Only worst-case analysis; average case analysis would be better, but

- ➡ what is the input distribution of a problem?
- ➡ what happens if we are interested in the worst-case?

Motto

Adopting polynomial worst-case performance as our criterion of efficiency results in an elegant and useful theory that says something meaningful about practical computation, and would be impossible without this simplification.

GM

Organisation Content Algorithm and Problems Worst-Case Analysis Networks Problem: TSP	Organisation Content Algorithm and Problems Worst-Case Analysis Networks Problem: TSP					
TSP	P vs NP					
➡ given <i>n</i> cities, with positive distance d_{ij} , s.t. $d_{ij} = d_{ji}$	Definition (informal)					
what is the fastest tour of the cities, i.e. minimise	1 the complexity class P contains all feasible problems					
$\sum_{i=1}^{n} d_{\pi(i),\pi(i+1)}$ for permutation π with $\pi(n+1) = \pi(1)$	2 NP contains all problems that are feasible on a machine that can guess					
i=1 \Rightarrow the problem is called TSP	we will see that TSP can be solved in polynomial time if we allow a non-deterministic algorithm					
the (polynomially) related decision problem: TSP(D)	no clever way of removing non-determinism is known					
Naive Algorithm	 in fact if you find a polynomial-time algorithm you can win \$1 million: 					
enumerate all possible solutions; compute the costs; pick the best	 The Board of Directors of CMI [Clay Mathematics Institute] designated a \$1 million prize fund for the solution to this problem. → latest conjecture: P ≠ NP proven in 2050 (Natarajan Shankar) 					
Fact: Time bound: $O(n!)$, Space bound: $O(n)$ This bound can be improved slightly, but remains exponential						
GM IVA 703608 (week 1) 13/14	GM IVA 703608 (week 1) 14/14					