
Organisation Content Algorithm and Problems Worst-Case Analysis Networks Problem: TSP

Algorithm Theory

Georg Moser Mircea Dan Hernest

Institute of Computer Science @ UIBK

Summer 2007

GM LVA 703608 (week 1) 1/14

Organisation Content Algorithm and Problems Worst-Case Analysis Networks Problem: TSP

Schedule

week 1 March 5 week 9 May 14
week 2 March 12 week 10 May 21
week 3 March 19 week 11 June 4
week 4 March 26 week 12 June 11
week 5 April 16 week 13 June 18
week 6 April 23 week 14 June 25
week 7 April 30 first exam July 2
week 8 May 7
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Literature & Online Material

Literature

Papadimitriou, Christo, Compu-
tational Complexity (Addison-
Wesley, 1994)

Online Material

Transparencies and homework are available from IP starting with
138.232; solution to selected exercises will be available online after they
have been discussed.
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Exams and Exercises

á lecture is a VU, i.e., ”Vorlesung”and ”̈Ubung”are combined

á we offer 3 exercise groups

á mid-term test (45 min) on May 4 (covers the material of first 7
weeks)

á let E denote the exam result, T the test result; the final grade is
computed as

max{E , d2
3
· E +

1

3
· Te}

Exercise Groups

UE Group 1 Friday 12.15-13.00, SR 12 Georg Moser
Group 2 Friday 12.15-13.00, HS 10 Dan Hernest
Group 3 Friday 13.15-14.00, HS 10 Dan Hernest
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Content

W 1 Introduction, Problems and Algorithms
W 2 Turing machines as algorithms, multiple-string TMs
W 3 Random access machines, nondeterministic machines
W 4 Complexity classes, The Hierarchy Theorem
W 5 The reachability method, Savitch’s Theorem
W 6 Reductions, completeness, Cook’s Theorem
W 7 Logical characterisations, Fagin’s Theorem
W 8 NP-complete problems, Variants of SAT
W 9 Graph-theoretical problems, Sets and numbers
W 10 coNP, Pratt’s Theorem
W 11 Function problems
W 12 Randomised Computation
W 13 Circuit Complexity
W 14 Approximability
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Problem: REACHABILITY
A (directed) graph G = (V ,E ) is a finite set V of nodes and a set E of
edges, which are pairs of nodes.

Problem

Given a graph G and nodes 1, n ∈ V , is there a path between 1 and n?
This problem is called REACHABILITY.

Example

1 4

5

2 3

GM LVA 703608 (week 1) 6/14

Organisation Content Algorithm and Problems Worst-Case Analysis Networks Problem: TSP

Algorithm

á mark 1, set S := {1}
á Choose i ∈ S , remove i from S

á For all (i , j) ∈ E and j unmarked, mark j , add j to S

á Iterate till S is empty.

á Answer“yes” if n is marked, otherwise“no”

Fact: The (time) complexity of the search algorithm is O(n2); search can
be depth-first or breadth-first.

Definition

f , g functions from N to N.

á f (n) = O(g(n)), ∃c, n0 ≥ 1 ∀n ≥ n0 (f (n) ≤ c · g(n))

á f (n) = Ω(g(n)), if g(n) = O(f (n))

á f (n) = Θ(g(n)), if f (n) = O(g(n)) and f (n) = Ω(g(n))
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Worst-Case Analysis

We deal with growth rates only and regard polynomial growth rates as
acceptable, while exponential growth rates are intractable.

Only worst-case analysis; average case analysis would be better, but

á what is the input distribution of a problem?

á what happens if we are interested in the worst-case?

Motto

Adopting polynomial worst-case performance as our criterion of
efficiency results in an elegant and useful theory that says
something meaningful about practical computation, and would
be impossible without this simplification.
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Networks

Fact: The space requirements of the Dijkstra algorithm is O(n). Can be
improved to O((log n)2).

á a network N = (V ,E , s, t, c) is a graph with source s and sink t

á if (i , j) ∈ E , then c(i , j) > 0 is the capacity

á a flow f assigns non-negative integers to edges, s.t. f (i , j) ≤ c(i , j)

á for each node j (except s, t)∑
(i ,j)∈E

f (i , j) =
∑

(j ,k)∈E

f (j , k) .

á the value of the network is
∑

(s,s′)∈E f (s, s ′)
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Problem: MAX FLOW

á MAX FLOW is the problem to find the flow with the largest value

á MAX FLOW(D) is the related decision problem

á MAX FLOW and MAX FLOW(D) are polynomial equivalent

Example

s t
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we define the derived network N(f ) = (V ,E ′, s, t, c ′)

E ′ := E − {(i , j) | f (i , j) = c(i , j)}) ∪
∪ {(j , i) | (i , j) ∈ E and f (i , j) > 0}

c ′(i , j) := c(i , j)− f (i , j) for old edges

c ′(i , j) := f (j , i) for new edges
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network N
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derived network N(f )

á assume there exists f ′ with f ′ greater than f : ∆f = f ′ − f is
positive flow in N(f )
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Algorithm

1 start with zero-flow in N.

2 construct N(f )

á if there is a path from s to t:
find the smallest capacity c ′ on the path and add it to the flow

á employ algorithm for REACHABILITY
á Repeat, until no path can be found

Complexity

á at most n · C iterations, where C is the maximal capacity

á implies time complexity: O(n2 · nC ) = O(n3C )

á DANGER: C depends exponential on any succinct representation of
the input

á more thought (i.e. using the shortest path) yields O(n5)

á reducible to O(n3)
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TSP

á given n cities, with positive distance dij , s.t. dij = dji

á what is the fastest tour of the cities, i.e. minimise

n∑
i=1

dπ(i),π(i+1) for permutation π with π(n + 1) = π(1)

á the problem is called TSP

á the (polynomially) related decision problem: TSP(D)

Naive Algorithm

á enumerate all possible solutions; compute the costs; pick the best

Fact: Time bound: O(n!), Space bound: O(n)
This bound can be improved slightly, but remains exponential
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P vs NP

Definition (informal)

1 the complexity class P contains all feasible problems

2 NP contains all problems that are feasible on a machine that can
guess

we will see that TSP can be solved in polynomial time if we allow a
non-deterministic algorithm

á no clever way of removing non-determinism is known

á in fact if you find a polynomial-time algorithm you can win
$1 million:

The Board of Directors of CMI [Clay Mathematics Institute]
designated a $1 million prize fund for the solution to this problem.

á latest conjecture: P 6= NP proven in 2050 (Natarajan Shankar)
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