# Algorithm Theory 

Georg Moser Mircea Dan Hernest

Institute of Computer Science @ UIBK

Summer 2007

## Content

W1 Introduction, Problems and Algorithms
W 2 Turing machines as algorithms, multiple-string TMs
W 3 Random access machines, nondeterministic machines
W4 Complexity classes
W 5 The Hierarchy Theorems
W6 Reachability Method
W7 Savitch's Theorem
W 8 Reductions, completeness, Cook's Theorem
W 9 NP-complete problems, Variants of SAT
W 10 Graph-theoretic Problems
W 11 Hamilton Path
W 12 Sets and Numbers
W 13 coNP \& Primality
W 14 Function Problems

## Definition

NAESAT $=\left\{\varphi: \begin{array}{l}\varphi \text { is a satisfiable 3CNF-formula and in no clause } \\ \text { all literals get the truth values true }\end{array}\right\}$

## Theorem

NAESAT is NP-complete

## Proof

we reduce from CIRCUIT SAT

## Definition

1 recall reduction from CIRCUIT SAT to 3SAT
$[2$ instead duplicating literals, we add the new variable $z$ to all small clauses

## $R(C) \in$ NAESAT implies $C \in$ CIRCUIT SAT

$\Rightarrow$ suppose $R(C) \in$ NAESAT with assignment $T$
$\Rightarrow$ the complement $\bar{T}$ satisfies $R(C)$ too
$\Rightarrow$ wlog $\exists$ assignment such that $z$ is false
$\Rightarrow$ this assignment satisfies $C$
$C \in$ CIRCUIT SAT implies $R(C) \in$ NAESAT
$\Rightarrow$ suppose $C$ is satisfied; $\exists$ CNF formula $\varphi$ such that for each clause $C_{i} \in \varphi,\left|C_{i}\right| \leqslant 3$
$\Rightarrow \exists$ assignment $T$ satisfying $\varphi$
$\Rightarrow$ extend $T$ such that $T(z)=$ false

- we show that literals in the extended clauses $C_{i}^{\prime} \in R(C)$ get alternating truth-values:
(i) one- or two-literal clauses
(ii) $g \leftrightarrow\left(h \wedge h^{\prime}\right)$, (iii) $g \leftrightarrow\left(h \vee h^{\prime}\right)$
$\Rightarrow$ consider $g \leftrightarrow\left(h \wedge h^{\prime}\right)$ this becomes

$$
\neg g \vee h \vee z \quad \neg g \vee h^{\prime} \vee z \quad \neg h \vee \neg h^{\prime} \vee g
$$

due to $z$ the first clause have alternating truth values
assume $T(\neg h)=T(\neg h)=T(g)=$ true
then $T(\neg g \vee h \vee z)=$ false
finally, log-space computablility is easily shown

## Definition

a clique in an undirected graph $G$ is
1 a subgraph $C$
2 every two nodes in $C$ are connected by an edge
a $k$-clique is a clique that contains $k$-nodes

## Definition

CLIQUE $=\{(G, K) \mid G$ is an undirected graph with a $K$-clique $\}$


Definition
$G=(V, E)$ be an undirected graph, $I \subseteq V$
$-I$ is independent if for $i, j \in I,(i, j) \notin E$
INDEPENDENT SET $=\left\{(G, K) \left\lvert\, \begin{array}{l}\exists \text { independent set } I \text { of } G \\ |I|=K\end{array}\right.\right\}$

## Theorem

INDEPENDENT SET is NP-complete.
Proof
reduce from 3SAT to restricted graphs
where nodes can be partitioned in $m$ disjoint triangles
$\Rightarrow$ the main gadgets are triangles
$\Rightarrow$ the only independent sets of triangles are single nodes

## Definition

1 for each clause in $\varphi$ (assume that there are $m$ ) we create a triangle
12 each node corresponds to a literal in the clause
3 connect dual literals
respectively the nodes representing literals
4 set $K=m$
$\varphi \in$ 3SAT implies $R(\varphi) \in$ INDEPENDENT SET
$\Rightarrow$ assume $\varphi \in 3$ CNF is satisfiable with assignment $T$
$\Rightarrow$ define I by picking a true literal-node for each triangle
$R(\varphi) \in$ INDEPENDENT SET implies $\varphi \in$ 3SAT
$\Rightarrow$ assume $R(\varphi) \in$ INDEPENDENT SET with independet set I
$\Rightarrow$ define assignment $T$ by setting the literals in / to true
$\Rightarrow$ for each triangle there has to be such a literal-node
$\Rightarrow$ all clauses are satisfied

## $R$ is log-space computable

 triangles and the connecting edges have to be constructed one after one, saving space; we need only store the indices of variables in the clauses
## Definition

3 AT $_{3}=\left\{\begin{array}{c}\varphi \text { is a satisfiable 3CNF-formula, each variable occurs at } \\ \varphi \left\lvert\, \begin{array}{c}\text { most } 3 \text { times and each literal at most twice in the for- } \\ \text { mula }\end{array}\right.\end{array}\right\}$

## Theorem

3SAT ${ }_{3}$ is in $\mathbf{P}$

## Proof

reduction to bipartite matching problem:
$\Rightarrow$ given a bipartite graph such that for each set $B$ of boys, $\exists$ adjacent set $g(B)$ of girls such that $|g(B)| \geqslant|B|$
$\Rightarrow$ show there exists a perfect matching

Definition
a bipartite graph is a tripe $B=(U, V, E)$ where
$1 U=\left\{u_{1}, \ldots, u_{n}\right\} \quad$ boys
$2 V=\left\{v_{1}, \ldots, v_{n}\right\}$ girls
$3 E=$ pairs $\{i, j\}$ of nodes with $i \in U, j \in V$


## Definition

a (perfect) matching $M \subseteq E$ in a bipartite graph is
1 set of $n$ edges
$2\{u, v\}$ and $\left\{u^{\prime}, v^{\prime}\right\}$ in $M$ implies $u \neq u^{\prime}$ and $v \neq v^{\prime}$

## Problem

$\Rightarrow$ given a bipartite graph $B$
$\Rightarrow$ does $B$ have a matching

## Theorem

## $\Rightarrow$ MATCHING $\in \mathbf{P}$

$\Rightarrow$ bipartite matching problem $\in \mathbf{P}$

## Proof Sketch

reduce to MAX FLOW

## Definition

let $\varphi \in 3 C N F$
1 consider the set of clause in $\varphi$ as the set $U$ of boys
2] the variables as the set $V$ of girls
$3\{C, x\} \in E$ if variable $x$ occurs in clause $C$

## Theorem

3SAT 3 is in $\mathbf{P}$
Proof
reduce to bipartite matching problem
$\Rightarrow$ given a subset of $m$ clauses
$\Rightarrow$ the clauses connect to at least $m$ variables
the formula $(x \vee y \vee \neg z) \wedge(x \vee \neg y \vee \neg z) \wedge(\neg x \vee y \vee z)$
yields the (extended) bipartite (sub)graph $B$


## $B$ contains the matching

$$
\begin{aligned}
& (x \vee y \vee \neg z) \longrightarrow y \\
& (x \vee \neg y \vee \neg z) \\
& (\neg x \vee y \vee z)
\end{aligned}
$$

giving rise to assignment $T$ :

$$
T(x)=\text { true } \quad T(y)=\text { true } \quad T(z)=\text { false }
$$

