

NAESAT	CLIQUE & INDEPENDENT SET	3SAT ₃	NAESAT	CLIQUE & INDEPENDENT SET	3SAT ₃	
→ consider $g \leftrightarrow (h \land h')$			Definition CLIQUE $CLIQUE = \{(G, K) \mid G \text{ is an undirected graph with a } K\text{-clique}\}$			
due t assur then finally, log Definition a clique in	n an undirected graph G is	□ k-clique	Definitio		PENDENT SET	
2 every by a	bgraph C y two nodes in C are connected C is c n edge e is a clique that contains k -nodes LVA 703608 (week 10)	C is complete		• <i>I</i> is independent if for $i, j \in I$, $(i, j) \notin E$ INDEPENDENT SET = $\left\{ (G, K) \mid \begin{array}{c} \exists \text{ independent set } I \text{ of } G \\ I = K \end{array} \right\}$		
NAESAT Theorem INDEPEN	CLIQUE & INDEPENDENT SET	3SAT ₃	NAESAT $arphi \in 3SA$	CLIQUE & INDEPENDENT SET $(arphi)\inINDEPENDENT$	3SAT3	
Proof reduce from 3SAT to restricted graphs where nodes can be partitioned in <i>m</i> disjoint triangles			 ⇒ assume φ ∈ 3CNF is satisfiable with assignment T ⇒ define I by picking a true literal-node for each triangle 			
 the main gadgets are triangles the only independent sets of triangles are single nodes 			$R(\varphi) \in \text{INDEPENDENT SET implies } \varphi \in 3\text{SAT}$ ⇒ assume $R(\varphi) \in \text{INDEPENDENT SET}$ with independet set <i>I</i> ⇒ define assignment <i>T</i> by setting the literals in <i>I</i> to true			
1 for e	 Definition construction of <i>R</i> 1 for each clause in φ (assume that there are <i>m</i>) we create a triangle 2 each node corresponds to a literal in the clause 3 connect dual literals respectively the nodes representing literals 4 set K = m 		 for each triangle there has to be such a literal-node all clauses are satisfied <i>R</i> is log-space computable triangles and the connecting edges have to be constructed one after one, saving space; we need only store the indices of variables in the clauses 			
3 conn respe						
GM	LVA 703608 (week 10)	120	GM	LVA 703608 (week 10)	121	



