Algorithm Theory

Georg Moser Mircea Dan Hernest

Institute of Computer Science @ UIBK

Summer 2007

GM

LVA 703608 (week 12)

.

Content

W-1	Introduction, Problems and Algorithms
₩ <u>2</u>	Turing machines as algorithms, multiple-string TMs
₩3	Random access machines, nondeterministic machines
₩ 4	Complexity classes
₩ 5	The Hierarchy Theorems
₩-6	Reachability Method
₩ 7	Savitch's Theorem
₩-8	Reductions, completeness, Cook's Theorem
₩ 9	NP-complete problems, Variants of SAT
W 10	Graph-theoretic Problems
W 11	Hamilton Path
W 12	Sets and Numbers
W 13	coNP & Primality
W 14	Function Problems

Hamilton Path

Definition

HAMILTON PATH

- given a directed graph G
- does there exists a path (starting in any node) through G such that every node in *G* is visited exactly once?

Theorem

HAMILTON PATH is **NP**-complete

Proof

we have already shown that HAMILTON PATH \in **NP**; it suffices to show that 3SAT reduces to HAMILTON PATH

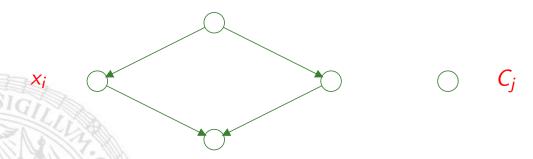
GM LVA 703608 (week 12)

let $\varphi \in 3$ CNF such that

$$\varphi = (\alpha_1 \vee \beta_1 \vee \gamma_1) \wedge \cdots \wedge (\alpha_m \vee \beta_m \vee \gamma_m)$$

how to convert φ to a graph?

let k denote the number of variables in φ



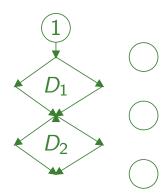
variable gadget or (diamond)

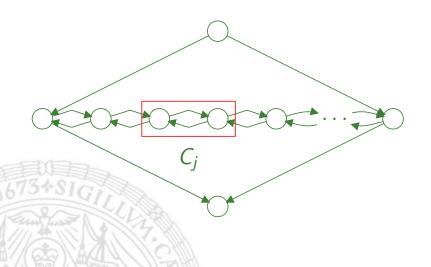
clause gadget

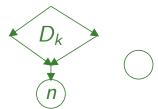
GM

inner structure of diamonds *D*:

the row contains 3m + 3 nodes, conceived as representations for the clauses plus separator nodes







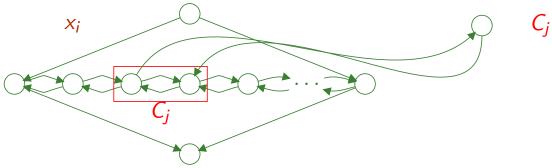
higher-level structure

GM

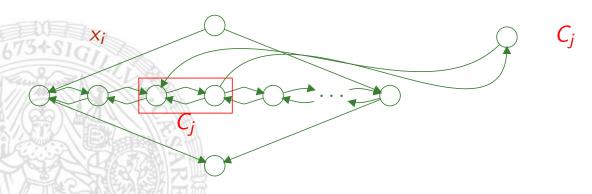
LVA 703608 (week 12)

130

x_i appears in C_j



$\neg x_i$ appears in C_j



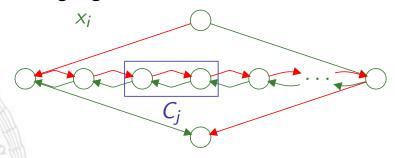
Lemma

if $\varphi \in 3SAT$, then $R(\varphi) \in HAMILTON PATH$

Proof

suppose φ is satisfiable by T

- the path begins at 1, goes through the diamonds, ends in n
- to hit the inner nodes of each diamond the path either traverses from left to right (zig-zag), or from right to left (zag-zig)
- if x_i is true (in T) we zig-zag through the diamond otherwise we zag-zig:



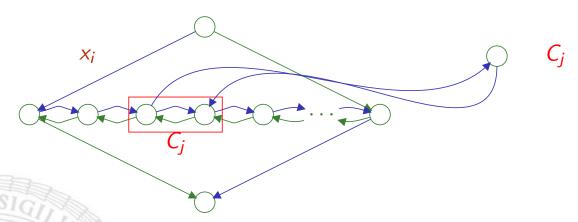
• to cover the clause nodes, the path has to detour

to cover the clause flodes, the path has to detour

GM LVA 703608 (week 12) 132

Detour

- 1 select one of the satisfied literals.
- 2 if x_i is selected in C_j detour at the inner nodes corresponding to C_i



we have constructed a Hamilton path through $R(\varphi)$

GM LVA 703608 (week 12)

133

Observation

• any Hamilton path through $R(\varphi)$ has to start in 1 and end in n

Proof

otherwise: indegree of 1 is 0, outdegree of n is 0 the assumed path cannot include 1 and n at all Contradiction

Definition

we call a Hamilton path normal, if

- 1 it either zig-zags or zag-zigs through the diamonds
- processes the diamonds in order
- 3 except for possible detours through the clause-nodes

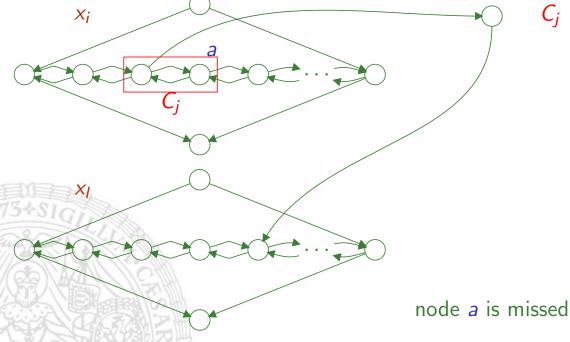
GM LVA 703608 (week 12)

Lemma

any Hamilton path has to be normal

Proof

any deviation would have an edge from diamond D_i to clause-node C_i and then to a diamond D_l , i < l



GM

LVA 703608 (week 12)

Lemma

if $R(\varphi) \in HAMILTON PATH$, then $\varphi \in 3SAT$

Proof

assume

- 11 the existence of a normal Hamilton path through $R(\varphi)$
- 2 starting in 1, ending in *n*

Definition

assignment T

- 1 if the path zig-zags through diamond D_i set $T(x_i) = \mathbf{true}$
- 2 if the path zag-zigs, set $T(x_i) =$ false

for each clause, the path chooses a (true) literal, hence φ is satisfied

Lemma

R is log-space computable

easy

GM

LVA 703608 (week 12)

136

137

Travelling Sales Person

Definition

TSP(D)

given

- n cities $1, \ldots, n$
- 2 a nonnegative integer distance d_{ij} between cities i and j
- distance is symmetric
- 4 budget B

is it possible to visit all n cities (and return) with the budget B so that every city is visited at most once?

Fact

HAMILTON PATH is defined for directed graphs, but is definable for undirected graphs as well; the latter problem is **NP**-complete, too

Theorem

 $\mathsf{TSP}(D)$ is **NP**-complete

GM LVA 703608 (week 12)

Proof

reduction from HAMILTON PATH on undirected graphs

Definition construction of R

- 1 given a graph G with n nodes
- 2 consider *n* cities
- 3 set $d_{ij} = 1$, if $(i, j) \in G$, otherwise 2
- 4 set B = n + 1

 $G \in \mathsf{HAMILTON}\ \mathsf{PATH}\ \mathsf{iff}\ R(G) \in \mathsf{TSP}(D)$

easy

R is log-space computable

trivial

LVA 703608 (week 12)

138