Algorithm Theory

Georg Moser Mircea Dan Hernest

Institute of Computer Science @ UIBK

Summer 2007

Content

W 1	Introduction, Problems and Algorithms
W 2	Turing machines as algorithms, multiple-string TMs
W 3	Random access machines, nondeterministic machines
W 4	Complexity classes
W 5	The Hierarchy Theorems
W 6	Reachability Method
W 7	Savitch's Theorem
W8	Reductions, completeness, Cook's Theorem
W 9	NP-complete problems, Variants of SAT
W 10	Graph-theoretic Problems
W 11	Hamilton Path
W 12	Sets and Numbers
W 13	coNP \& Primality
W 14	Function Problems

Hamilton Path

Definition

HAMILTON PATH

- given a directed graph G
- does there exists a path (starting in any node) through G such that every node in G is visited exactly once?

Theorem
HAMILTON PATH is NP-complete

Proof

we have already shown that HAMILTON PATH \in NP; it suffices to show that 3SAT reduces to HAMILTON PATH
let $\varphi \in$ CNF such that

$$
\varphi=\left(\alpha_{1} \vee \beta_{1} \vee \gamma_{1}\right) \wedge \cdots \wedge\left(\alpha_{m} \vee \beta_{m} \vee \gamma_{m}\right)
$$

how to convert φ to a graph?
let k denote the number of variables in φ

inner structure of diamonds D :
the row contains $3 m+3$ nodes, conceived as representations for the clauses plus separator nodes

higher-level structure
x_{i} appears in C_{j}

C_{j}
$\neg x_{i}$ appears in C_{j}

Lemma
if $\varphi \in$ 3SAT, then $R(\varphi) \in$ HAMILTON PATH
Proof
suppose φ is satisfiable by T

- the path begins at 1 , goes through the diamonds, ends in n
- to hit the inner nodes of each diamond the path either traverses from left to right (zig-zag), or from right to left (zag-zig)
- if x_{i} is true (in T) we zig-zag through the diamond otherwise we zag-zig:

- to cover the clause nodes, the path has to detour

Detour

1 select one of the satisfied literals.
2 if x_{i} is selected in C_{j}
detour at the inner nodes corresponding to C_{j}

C_{j}
we have constructed a Hamilton path through $R(\varphi)$

Observation

- any Hamilton path through $R(\varphi)$ has to start in 1 and end in n

Proof
otherwise: indegree of 1 is 0 , outdegree of n is 0
the assumed path cannot include 1 and n at all
Contradiction

Definition

we call a Hamilton path normal, if
1 it either zig-zags or zag-zigs through the diamonds
2 processes the diamonds in order
3 except for possible detours through the clause-nodes

Lemma
if $R(\varphi) \in$ HAMILTON PATH, then $\varphi \in$ 3SAT
Proof
assume
1 the existence of a normal Hamilton path through $R(\varphi)$
2 starting in 1, ending in n
Definition
11 if the path zig-zags through diamond D_{i} set $T\left(x_{i}\right)=$ true
$\sqrt{2}$ if the path zag-zigs, set $T\left(x_{i}\right)=$ false
for each clause, the path chooses a (true) literal,
hence φ is satisfied

Lemma

R is log-space computable

Lemma

any Hamilton path has to be normal
Proof
any deviation would have an edge from diamond D_{i} to clause-node C_{j} and then to a diamond $D_{l}, i<l$

GM

Travelling Sales Person

Definition
given
$11 n$ cities $1, \ldots, n$
2 a nonnegative integer distance $d_{i j}$ between cities i and j
3 distance is symmetric
4 budget B
is it possible to visit all n cities (and return) with the budget B so that every city is visited at most once?

Fact
HAMILTON PATH is defined for directed graphs, but is definable for undirected graphs as well; the latter problem is NP-complete,
too
Theorem
TSP (D) is NP-complete

Proof
reduction from HAMILTON PATH on undirected graphs
Definition
construction of R
1 given a graph G with n nodes
2 consider n cities
3 set $d_{i j}=1$, if $(i, j) \in G$, otherwise 2
4 set $B=n+1$
$G \in$ HAMILTON PATH iff $R(G) \in \operatorname{TSP}(D)$

- easy
R is log-space computable
- trivial

