Algorithm Theory

Georg Moser Mircea Dan Hernest

Institute of Computer Science @ UIBK
Summer 2007

Summer 2007

Content

GM	LVA 703608 (week 13)	1		
Max-Cut	Colouring	Tripartite Matching	Set Cover	Integer Programming

Reminder: MAXCUT
Definition
MAXCUT

- a cut in an undirected graph $G=(V, E)$ is a partition of the nodes in S and $V-S$
- the size of the cut $(S, V-S)$ is the number of edges connecting the sets.

Definition
MAXCUT(D)
$\operatorname{MAXCUT}(D)=\{(G, K): G$ has a cut of size K or more $\}$

Theorem

MINCUT
the cut with the smallest possible size is polytime computable
Theorem
$\operatorname{MAXCUT}(D)$ is NP-complete

W 1 Introduction, Problems and Algorithms
W 2 Turing machines as algorithms, multiple-string TMs
W 3 Random access machines, nondeterministic machines
W 4 Complexity classes
W 5 The Hierarchy Theorems
W6 Reachability Method
W 7 Savitch's Theorem
W8 Reductions, completeness, Cook's Theorem
W 9 NP-complete problems, Variants of SAT
W 10 Graph-theoretic Problems
W11 Hamilton Path
W 12 Sets and Numbers
W 13 coNP \& Primality
W 14 Function Problems

Definition
Colouring
3-COLOURING $=\left\{\begin{array}{c}G \text { is an undirected graph colourable } \\ \text { with } 3 \text { colours such that no two adja- } \\ \text { eent nodes have the same colour }\end{array}\right\}$
the problem to colour G with k colours is called k-COLOURING
Theorem
3-COLOURING is NP-complete

Proof

- easy to see: 3 -COLOURING $\in \mathbf{N P}$
to show completeness, we reduce from NAESAT; assume $\varphi \in 3$ CNF

Variable-gadget

1 for each variable x_{i} we employ:
2 all triangles share the node a

Clause-gadget

1 each clause C_{j} is represented by
2 and $C_{j i}$ is connected with the $i^{\text {th }}$ literal-node of C_{j}

Example Construction of $R\left(\neg x_{1} \vee \neg x_{2} \vee x_{4}\right)$

Lemma

if $\varphi \in$ NAESAT, then $R(\varphi) \in 3$-COLOURING
Proof

- suppose $T(\varphi)=$ true, and T is alternating i.e., T fulfills the NAESAT condition
use colours $\{0,1,2\}$:
1 colour node a by colour 2
2 if $T\left(x_{i}\right)=$ true, colour the variable-node $(\neg) x_{i}$ by 1 (0)
if $T\left(x_{i}\right)=$ false, colour $(\neg) x_{i}$ by 0 (1)
3 assume $C_{j 1}, C_{j 2}$ to be connected
to a true and false literal respectively
colour $C_{j 1}$ by $0, C_{j 2}$ by 1
4 the remaining clause-node is coloured by 2
$\begin{array}{lllll}\text { GM } & \text { LVA 703608 (week 13) } & & 142 \\ \text { Max-Cut } & \text { Colouring } & \text { Tripartite Matching } & \text { Set Cover } & \text { Integer Programming }\end{array}$
Lemma
if $R(\varphi) \in$ 3-COLOURING, then $\varphi \in$ NAESAT
Proof
- suppose $R(\varphi)$ can be 3 -coloured
rename the colours to $\{0,1,2\}$:
1 assume a is coloured by 2
$\boxed{2}$ if x_{i} is coloured by 1 , set $T\left(x_{i}\right)=$ true
if x_{i} is coloured by 0 , set $T\left(x_{i}\right)=$ false
3 the clause-triangles are 3-colourable, only if T admits alternating truth-values in the clausessuppose otherwise:
if \exists a clause C such that all literals in C get the same truth value (under T)
then the corresponding clause-triangle cannot be coloured as either 1 or 0 cannot be used

Example

consider formula $\varphi=\neg x_{1} \vee \neg x_{2} \vee x_{4}$; the coloured graph $R(\varphi)$ has the form:

the corresponding assignment T reads

$$
T\left(x_{1}\right)=\text { false } T\left(x_{2}\right)=\text { true } T\left(x_{3}\right)=\text { true } T\left(x_{4}\right)=\text { false }
$$

- $B=\left\{b_{1}, \ldots, b_{n}\right\}$
boys
- $G=\left\{g_{1}, \ldots, g_{n}\right\}$
- $H=\left\{h_{1}, \ldots, h_{n}\right\}$
- $T \subseteq B \times G \times H$

TRIPARTITE MATCHING:

$\left\{\begin{aligned} & T \text { contains } n \text { triples, such that for distinct } \\ (B, G, H, T): & \left.(b, g, h),\left(b^{\prime}, g^{\prime}, h^{\prime}\right) \in T \text { we have } b \neq b^{\prime}, g \neq g^{\prime},\right\} \\ & \text { and } h \neq h^{\prime}\end{aligned}\right\}$

Theorem

TRIPARTITE MATCHING is NP-complete
Proof Idea
reduction from 3SAT

Definition

EXACT COVER BY 3-SETS

EXACT COVER BY 3-SETS:

Theorem
EXACT COVER BY 3-SETS is NP-complete

Proof Sketch

1 EXACT COVER BY 3-SETS is a generalisation of TRIPARTITE MATCHING
set $U=B \cup G \cup H$
and $n=|T|$
2 as reduction we employ the identity reduction

	LVA 703608 (week 13)		146
Colouring	Tripartite Matching	Set Cover	Integer Programming

Set Cover Integer Programming

SET COVERING:
$\left\{(U, F, B): \begin{array}{l}F=\left\{S_{1}, \ldots, S_{n}\right\}, S_{j} \subseteq U,\left\{S_{j_{1}}, \ldots, S_{j_{B}}\right\} \subseteq F \text { and } \\ \bigcup_{i=1} S_{j_{i}}=U\end{array}\right\}$

- generalises EXACT COVER BY 3-SETS
set $B=m$
allow overlaps
SET PACKING:
$\left\{(U, F, K): \begin{array}{l}F=\left\{S_{1}, \ldots, S_{n}\right\}, S_{j} \subseteq U,\left\{S_{j_{1}}, \ldots, S_{j_{K}}\right\} \subseteq F \text { and } \\ S_{j_{i}} \cap S_{j_{j^{\prime}}}=\emptyset, \text { for } i \neq i^{\prime}\end{array}\right\}$
- generalises EXACT COVER BY 3-SETS
set $K=m$
drop complete covering
Theorem
SET COVERING, SET PACKING are NP-complete

Definition
INTEGER PROGRAMMING
given

- a system of linear inequalities, in n variables
- with integer coefficients
- has the system an integer solution?

Theorem
INTEGER PROGRAMMING is NP-complete
Remark
INTEGER PROGRAMMING is powerful in expressing other problems:

- consider SET COVERING
- this problem can be expressed by:

$$
\begin{equation*}
A \cdot x \geqslant 1 \quad \sum_{i=1}^{n} x_{i} \leqslant B \tag{i}
\end{equation*}
$$

- A is a $m \times n$-matrix, where $m=|U|$ and A 's columns are bit vectors of the sets S_{i}
- $x, 1$ are column vectors

Example

Consider $U=\{1,2,3,4\}, F=\{\{1,2\},\{3,4\},\{2,3\}\}, B=2$

$$
\begin{gathered}
A x=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \geqslant\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right) \\
x_{1}+x_{2}+x_{3} \leqslant 2 \\
x_{1} \in\{0,1\} \\
x_{2} \in\{0,1\} \\
x_{3} \in\{0,1\}
\end{gathered}
$$

$1 x_{i}$ is 1 iff S_{i} is in the cover
2 the only solution of the equations is $x_{1}=x_{2}=1$ and $x_{3}=0$
3 hence $\{\{1,2\},\{3,4\}\}$ builds the cover.

given

- a set U, such that $|U|=n$
- for each $i \in[1, n]: v_{i}$ is the value of item i, w_{i} its weight
- numbers K, W
- \exists subset $S \subseteq U, \sum_{i \in S} w_{i} \leqslant W, \sum_{i \in S} v_{i} \geqslant K$?

Theorem
KNAPSACK is NP-complete

Proof Sketch

- it easy to see that KNAPSACK $\in \mathbf{N P}$
for completeness, we use reduction from EXACT COVER BY 3-SETS Special Case:
for all $i: v_{i}=w_{i}$ and $K=W$
let $\left\{S_{1}, \ldots, S_{n}\right\}$ be a family of 3 -sets, s.t.
$S_{i} \subseteq U=\{1,2, \ldots, 3 m\}$, we look for disjoint sets that cover U
1 consider S_{i} as bit-vector in $\{0,1\}^{3 m}$
2 representing the bit-vectors as integers reduce into the special case of KNAPSACK
3 then binary addition almost simulates disjoint set union

$$
U=\{1,2,3,4,5,6\}, F=\{\{1,2,5\},\{1,3,5\},\{1,5,6\}\}
$$

$$
\begin{array}{lllllll}
S_{1} & 1 & 1 & 0 & 0 & 1 & 0 \\
S_{2} & 1 & 0 & 1 & 0 & 1 & 0 \\
S_{3} & 1 & 0 & 0 & 0 & 1 & 1 \\
\hline U & 1 & 1 & 1 & 1 & 1 & 1
\end{array}
$$

4 problem carry
5 use base $n+1$ instead of 2
i.e. the integer w_{i} is representing S_{i} is defined as:

$$
w_{i}=\sum_{j \in S_{i}}(n+1)^{3 m-j} \quad \text { and } \quad K=\sum_{j=0}^{3 m-1}(n+1)^{j}
$$

