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Pseudopolynomial Algorithms

given an instance of KNAPSACK with

1 n items

2 values: {v1, . . . , vn}
3 weights: {w1, . . . ,wn}

we seek S ⊆ {1, . . . , n} such that
∑

j∈S vj > K

Algorithm:

1 V = max{v1, . . . , vn} and W = max{w1, . . . ,wn}
2 set V (w , 0) = 0 for all w

3 V (w , i + 1) = max{V (w , i), vi+1 + V (w − wi+1, i)}

note that

V (w , i) = max({
∑

j∈S vj | S ⊆ {1, . . . , i} and
∑

j∈S wj = w}

4 to solve KNAPSACK is suffices to pick an entry greater than
or equal the goal K ; this can be done in time O(nW )
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Strong NP-completeness

Observation
• all the NP-completeness problems considered

(except KNAPSACK) used polynomially small integers
(in the size of the input)

• the NP-completeness proof for KNAPSACK needed
exponentially large integers

Definition strongly NP-complete
a problem is called strongly NP-complete if

• any instance x with n = |x | contains
integers of size at most p(n) for a polynomial p

Theorem
CIRCUIT SAT, SAT, . . . , INDEPENDENT SET, . . . ,
EXACT COVER BY 3-SETS, . . . are all strongly NP-complete
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NP and coNP

Definition polynomial verifier

• A verifier of a language L is an algorithm P such that:

L = {w | there exists a string c so that P accepts 〈w , c〉}
• A polynomial verifier is one that runs in time polynomial in |w |

Definition succinct certificates
L has succinct certificates (the string c)
if ∃ polynomial verifier for L
(recall that |c| 6 p(|w |) for some polynomial p)

Definition coNP

coNP = {L : L ∈ NP}
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Observation
• suppose L ∈ coNP, and a string x such that x 6∈ L
• then x ∈ L, which implies the existence of a succinct

certificate c

• hence the“no”-instance x has a succinct disqualification

Example
VALIDITY = {ϕ : ϕ is a valid CNF-formula}

1 if ϕ is not valid, then the disqualification is an assignment T ,
such that T (ϕ) = false

2 the disqualification is succinct, i.e. it is at most polynomial in
the length of the formula

Example
HAMILTON PATH COMPLEMENT =

{G : G is a directed graph without Hamilton path}
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Theorem
if L is NP-complete, then its complement L is coNP-complete.

Example
VALIDITY and HAMILTON PATH COMPLEMENT are examples
of coNP-complete problems

Proof Sketch
we indicate the pattern of the proof for VALIDITY

1 we show the existence of a log-space reduction R such that
for every L ∈ coNP: x ∈ L iff R(x) ∈ VALIDITY:

x ∈ L iff x 6∈ L Note that L ∈ NP

iff S(x) 6∈ SAT NP-completeness of SAT

iff ¬S(x) is valid S a log-space reduction

iff ¬S(x) ∈ VALIDITY

2 set R(x) := ¬S(x)
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Theorem
if a coNP-complete problem L is in NP, then NP = coNP

Proof
we show: coNP ⊆ NP:

• consider L′ ∈ coNP

• ∃ reduction R from L′ to L

Theorem
if ∃ NP-complete problem L such that its complement L is in NP,
then NP = coNP

Theorem
if NP 6= coNP, then P 6= NP

Proof
1 assume to the contrary that P = NP

2 as P is closed under complement, we have P = coP = coNP

3 hence, we conclude NP = coNP
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Observation NP ∩ coNP

• problems in NP have succinct certificates

• problems in coNP have succinct disqualifications

• thus for L ∈ NP ∩ coNP each yes instance as a succinct
certificate and each no instance has a succinct disqualification
clearly no instance has both

Example
consider the language PRIMES:

PRIMES = {p : p is a prime number}

Theorem Pratt
PRIMES ∈ NP ∩ coNP, i.e., for each number n:

• either, we have a certificate that shows that n is not a prime

• or, we have a certificate that shows that n is a prime

GM LVA 703608 (week 14) 13

Strong NP-completeness NP and coNP Primality

Disqualification & Qualification for PRIMES

Fact
the obvious O(

√
n) is pseudopolynomial√

n is not a polynomial in |(n)2|

Theorem
PRIMES ∈ coNP

Proof
given p

• the string that disqualifies p is a pair ((u)2, (v)2)
such that p = u · v

• the length of the disqualification is polynomial
in the length of p
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Theorem
A number p > 1 is prime iff there is a number r ∈ {2, . . . , p − 1}
such that rp−1 = 1 mod p, and r

p−1
q 6= 1 mod p for all prime

divisors q of p − 1; r is called primitive root

Proof Idea
employ Fermat’s (small) Theorem
for all r ∈ {1, . . . , p − 1}: rp−1 = 1 mod p

Theorem
PRIMES ∈ NP

Proof
the certificate consists of

1 the primitive root r

2 the prime divisors q1, . . . , qk

3 primality certificates for qi
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Nondeterministic Algorithm
given p (in binary)

1 if p = 2, accept; if p > 2 and p even, reject

2 guess prime factorisation of p − 1 = q1
k1 · · · qm

km

verify by multiplication

3 guess r ∈ {2, . . . , p − 1} and verify that rp−1 = 1 mod p

4 verify for each i : r
p−1
qi 6= 1 mod p

5 recursively verify that q1, . . . , qm are prime

Observation
step 1 is constant; step 2 polynomial in log p; steps 3 & 4 can be
performed in polytime (in log n) by repeatedly squaring; solving the
recursion yields a polytime algorithm
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Succinct Certificate
alternatively the data of the algorithm can be collected in a succint
certificate C (p) = (r ; q1,C (q1), . . . )

C (67) = (2; 2, (1), 3, (2; 2, (1)), 11, (8; 2, (1), 5, (3; 2, (1))))

Theorem Agrawal, Kayal, Saxena
PRIMES ∈ P

“Proof Idea
suppose a and p are coprime, then p is prime iff

(x − a)p ≡ (xp − a) mod p
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