Algorithm Theory

Georg Moser

Institute of Computer Science @ UIBK
Summer 2007

Content

W 1 Introduction, Problems and Algorithms
W 2 Turing machines as algorithms, multiple-string TMs
W 3 Random access machines, nondeterministic machines
W4 Complexity classes
W 5 The Hierarchy Theorems
W 6 Reachability Method
W 7 Savitch's Theorem
W 8 Reductions, completeness, Cook's Theorem
W 9 NP-complete problems, Variants of SAT
W 10 Graph-theoretic Problems
W 11 Hamilton Path
W 12 Sets and Numbers
W 13 coNP \& Primality
W 14 Function Problems

Pseudopolynomial Algorithms

given an instance of KNAPSACK with
$1 n$ items
2 values: $\left\{v_{1}, \ldots, v_{n}\right\}$
3 weights: $\left\{w_{1}, \ldots, w_{n}\right\}$
we seek $S \subseteq\{1, \ldots, n\}$ such that $\sum_{j \in S} v_{j} \geqslant K$
Algorithm:
$1 V=\max \left\{v_{1}, \ldots, v_{n}\right\}$ and $W=\max \left\{w_{1}, \ldots, w_{n}\right\}$
2 set $V(w, 0)=0$ for all w
$3 V(w, i+1)=\max \left\{V(w, i), v_{i+1}+V\left(w-w_{i+1}, i\right)\right\}$
note that

$$
V(w, i)=\max \left(\left\{\sum_{j \in S} v_{j} \mid S \subseteq\{1, \ldots, i\} \text { and } \sum_{j \in S} w_{j}=w\right\}\right.
$$

4 to solve KNAPSACK is suffices to pick an entry greater than or equal the goal K; this can be done in time $\mathcal{O}(n W)$

Strong NP-completeness

Observation

- all the NP-completeness problems considered (except KNAPSACK) used polynomially small integers (in the size of the input)
- the NP-completeness proof for KNAPSACK needed exponentially large integers

Definition

 strongly NP-completea problem is called strongly NP-complete if

- any instance x with $n=|x|$ contains integers of size at most $p(n)$ for a polynomial p

Theorem

CIRCUIT SAT, SAT, ..., INDEPENDENT SET, ...,
EXACT COVER BY 3-SETS, . . . are all strongly NP-complete

NP and coNP

Definition polynomial verifier

- A verifier of a language L is an algorithm P such that:
$\mathrm{L}=\{w \mid$ there exists a string c so that P accepts $\langle w, c\rangle\}$
- A polynomial verifier is one that runs in time polynomial in $|w|$

Definition succinct certificates
L has succinct certificates (the string c)
if \exists polynomial verifier for L
(recall that $|c| \leqslant p(|w|)$ for some polynomial p)

Definition

$$
\operatorname{coNP}=\{\overline{\mathrm{L}}: \mathrm{L} \in \mathbf{N P}\}
$$

Observation

- suppose $\mathrm{L} \in$ coNP, and a string x such that $x \notin \mathrm{~L}$
- then $x \in \overline{\mathrm{~L}}$, which implies the existence of a succinct certificate c
- hence the "no"-instance x has a succinct disqualification

Example

$$
\text { VALIDITY }=\{\varphi: \varphi \text { is a valid CNF-formula }\}
$$

11 if φ is not valid, then the disqualification is an assignment T, such that $T(\varphi)=$ false
2 the disqualification is succinct, i.e. it is at most polynomial in the length of the formula

Example
HAMILTON PATH COMPLEMENT =
\{G: G is a directed graph without Hamilton path\}

Theorem

if L is $\mathbf{N P}$-complete, then its complement $\overline{\mathrm{L}}$ is coNP-complete.

Example

VALIDITY and HAMILTON PATH COMPLEMENT are examples of coNP-complete problems

Proof Sketch

we indicate the pattern of the proof for VALIDITY
1 we show the existence of a log-space reduction R such that for every $\mathrm{L} \in$ coNP: $x \in \mathrm{~L}$ iff $R(x) \in$ VALIDITY:

$$
x \in \mathrm{~L} \quad \text { iff } \quad x \notin \overline{\mathrm{~L}} \quad \text { Note that } \overline{\mathrm{L}} \in \mathbf{N P}
$$

iff $S(x) \notin$ SAT
iff $\neg S(x)$ is valid $\quad S$ a log-space reduction
iff $\neg S(x) \in$ VALIDITY
2 set $R(x):=\neg S(x)$

Theorem

if a coNP-complete problem L is in NP, then NP = coNP

Proof

we show: coNP \subseteq NP:

- consider $\mathrm{L}^{\prime} \in$ coNP
- \exists reduction R from L^{\prime} to L

Theorem

if $\exists \mathbf{N P}$-complete problem L such that its complement $\overline{\mathrm{L}}$ is in NP, then $\mathbf{N P}=\mathbf{c o N P}$

Theorem

if $\mathbf{N P} \neq \mathbf{c o N P}$, then $\mathbf{P} \neq \mathbf{N P}$

Proof

1 assume to the contrary that $\mathbf{P}=\mathbf{N P}$
2 as \mathbf{P} is closed under complement, we have $\mathbf{P}=\mathbf{c o P}=\operatorname{coNP}$
B hence, we conclude NP = coNP

Observation

- problems in NP have succinct certificates

- problems in coNP have succinct disqualifications
- thus for $\mathrm{L} \in \mathbf{N P} \cap \mathbf{c o N P}$ each yes instance as a succinct certificate and each no instance has a succinct disqualification clearly no instance has both

Example
consider the language PRIMES:

$$
\text { PRIMES }=\{p: p \text { is a prime number }\}
$$

Theorem

PRIMES $\in \mathbf{N P} \cap$ coNP, i.e., for each number n :

- either, we have a certificate that shows that n is not a prime
- or, we have a certificate that shows that n is a prime

Disqualification \& Qualification for PRIMES

Fact
the obvious $\mathcal{O}(\sqrt{n})$ is pseudopolynomial
\sqrt{n} is not a polynomial in $\left|(n)_{2}\right|$

Theorem
 PRIMES \in coNP

Proof
given p

- the string that disqualifies p is a pair $\left((u)_{2},(v)_{2}\right)$ such that $p=u \cdot v$
- the length of the disqualification is polynomial in the length of p

Theorem

A number $p>1$ is prime iff there is a number $r \in\{2, \ldots, p-1\}$ such that $r^{p-1}=1 \bmod p$, and $r^{\frac{p-1}{q}} \neq 1 \bmod p$ for all prime divisors q of $p-1 ; r$ is called primitive root

Proof Idea
employ Fermat's (small) Theorem
for all $r \in\{1, \ldots, p-1\}: r^{p-1}=1 \bmod p$
Theorem
PRIMES $\in \mathbf{N P}$

Proof

the certificate consists of
1 the primitive root r
2 the prime divisors q_{1}, \ldots, q_{k}
3 primality certificates for q_{i}

Nondeterministic Algorithm
given p (in binary)
1 if $p=2$, accept; if $p>2$ and p even, reject
2 guess prime factorisation of $p-1=q_{1}{ }^{k_{1}} \cdots q_{m}{ }^{k_{m}}$ verify by multiplication
3 guess $r \in\{2, \ldots, p-1\}$ and verify that $r^{p-1}=1 \bmod p$
4 verify for each $i: r^{\frac{p-1}{q_{i}}} \neq 1 \bmod p$
5 recursively verify that q_{1}, \ldots, q_{m} are prime

Observation

step 1 is constant; step 2 polynomial in $\log p$; steps $3 \& 4$ can be performed in polytime (in $\log n$) by repeatedly squaring; solving the recursion yields a polytime algorithm

Succinct Certificate

alternatively the data of the algorithm can be collected in a succint certificate $C(p)=\left(r ; q_{1}, C\left(q_{1}\right), \ldots\right)$

$$
C(67)=(2 ; 2,(1), 3,(2 ; 2,(1)), 11,(8 ; 2,(1), 5,(3 ; 2,(1))))
$$

Theorem

Agrawal, Kayal, Saxena

PRIMES $\in \mathbf{P}$
"Proof Idea
suppose a and p are coprime, then p is prime iff

$$
(x-a)^{p} \equiv\left(x^{p}-a\right) \bmod p
$$

