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Pseudopolynomial Algorithms
given an instance of KNAPSACK with
n items
values: {vi,...,v,}
weights: {wy, ..., w,}
we seek S C {1,...,n} such that } ;s v; > K
Algorithm:
V = max{vi,...,vp} and W = max{wy,..., w,}
set V(w,0) =0 for all w
V(w,i+1) =max{V(w,i),viz1 + V(w — wjt1,i)}
note that
V(iw,i)= max({zjes vi| SC{1,...,i} and Zjes wj = w}

to solve KNAPSACK is suffices to pick an entry greater than
or equal the goal K; this can be done in time O(nWW)
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Strong NP-completeness

Observation
e all the NP-completeness problems considered
(except KNAPSACK) used polynomially small integers
(in the size of the input)
e the NP-completeness proof for KNAPSACK needed

exponentially large integers

Definition strongly NP-complete
a problem is called strongly NP-complete if

e any instance x with n = |x| contains
integers of size at most p(n) for a polynomial p

Theorem
CIRCUIT SAT, SAT, ..., INDEPENDENT SET, ...,
EXACT COVER BY 3-SETS, ...are all strongly NP-complete
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NP and coNP

Definition polynomial verifier
e A verifier of a language L is an algorithm P such that:

L = {w | there exists a string ¢ so that P accepts (w, c)}

e A polynomial verifier is one that runs in time polynomial in |w/|

Definition succinct certificates
L has succinct certificates (the string ¢)

if 94 polynomial verifier for L

(recall that |c| < p(|w|) for some polynomial p)

Definition coNP
coNP = {L: L € NP}
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Observation
e suppose [. € coNP, and a string x such that x ¢ L

e then x € L, which implies the existence of a succinct
certificate ¢

e hence the “no’-instance x has a succinct disqualification

Example
VALIDITY = {¢: ¢ is a valid CNF-formula}

if © is not valid, then the disqualification is an assignment T,
such that T(y) = false

the disqualification is succinct, i.e. it is at most polynomial in
the length of the formula

Example
HAMILTON PATH COMPLEMENT =

{G: G is a directed graph without Hamilton path}
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NP and coNP

Theorem
if L is NP-complete, then its complement L is coNP-complete.

Example

VALIDITY and HAMILTON PATH COMPLEMENT are examples
of coNP-complete problems

Proof Sketch
we indicate the pattern of the proof for VALIDITY

we show the existence of a log-space reduction R such that
for every L € coNP: x € L iff R(x) € VALIDITY:

xelL iff x¢L Note that L € NP
iff  S(x) & SAT NP-completeness of SAT
iff  —=5(x) is valid S a log-space reduction

iff —S(x) € VALIDITY

set R(x) := —=5(x) O
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Theorem
if a coNP-complete problem L is in NP, then NP = coNP

Proof
we show: coNP C NP:

e consider I/ € coNP

e J reduction R from L/ to L ]

Theorem

if 3 NP-complete problem L such that its complement L is in NP,
then NP = coNP

Theorem
if NP £ coNP, then P # NP

Proof
assume to the contrary that P = NP
as P is closed under complement, we have P = coP = coNP
hence, we conclude NP = coNP []
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Observation NP N coNP
e problems in NP have succinct certificates
e problems in coNP have succinct disqualifications

e thus for L € NP N coNP each yes instance as a succinct
certificate and each no instance has a succinct disqualification
clearly no instance has both

Example
consider the language PRIMES:

PRIMES = {p: p is a prime number}

Theorem Pratt
PRIMES € NP N coNP, i.e., for each number n:

e either, we have a certificate that shows that n is not a prime

e or, we have a certificate that shows that n is a prime
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Disqualification & Qualification for PRIMES

Fact
the obvious O(y/n) is pseudopolynomial
v/n is not a polynomial in |(n)2|

Theorem
PRIMES € coNP

Proof
given p
e the string that disqualifies p is a pair ((u)2, (v)2)
suchthat p=u-v

e the length of the disqualification is polynomial
in the length of p
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Primality

Theorem
A number p > 1 is prime iff there is a number r € {2,... p—1}

p—1

such that "1 =1 mod p, and r @« # 1 mod p for all prime
divisors g of p — 1; r is called primitive root

Proof Idea

employ Fermat’s (small) Theorem
forallre{1,....p—1}: rP"1 =1 mod p O]

Theorem
PRIMES € NP

Proof

the certificate consists of
the primitive root r

the prime divisors q1,..., gk
primality certificates for g;
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Nondeterministic Algorithm
given p (in binary)

if p =2, accept; if p > 2 and p even, reject

guess prime factorisation of p — 1 = g% - .. g,,fm

verify by multiplication
guess r € {2,...,p— 1} and verify that r’"1 =1 mod p

p—1

verify for each i: r % #1 mod p

recursively verify that g1,..., gmn are prime

Observation

step 1 is constant; step 2 polynomial in log p; steps 3 & 4 can be
performed in polytime (in log n) by repeatedly squaring; solving the
recursion yields a polytime algorithm
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GM

Succinct Certificate
alternatively the data of the algorithm can be collected in a succint

certificate C(p) = (r; g1, C(g1),-..)
C(67) =(2;2,(1),3,(2;2,(1)),11,(8;2,(1),5,(3;2,(1))))

]
Theorem Agrawal, Kayal, Saxena
PRIMES € P
“Proof ldea
suppose a and p are coprime, then p is prime iff
(x —a)P = (xP —a) mod p
]
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