Strong NP-completeness NP and coNP Primality Strong NP-completeness NP and coNP Primality

Algorithm Theory

Georg Moser

Institute of Computer Science @ UIBK

Summer 2007

Primality

Strong NP-completeness

Pseudopolynomial Algorithms

given an instance of KNAPSACK with

1 *n* items

Strong NP-completeness

- 2 values: $\{v_1, \ldots, v_n\}$
- 3 weights: $\{w_1, \ldots, w_n\}$

we seek $S \subseteq \{1,\ldots,n\}$ such that $\sum_{j \in S} v_j \geqslant K$

Algorithm:

- 1 $V = \max\{v_1, ..., v_n\} \text{ and } W = \max\{w_1, ..., w_n\}$
- 2 set V(w,0) = 0 for all w
- 3 $V(w, i+1) = \max\{V(w, i), v_{i+1} + V(w w_{i+1}, i)\}$

note that

$$V(w,i) = \max(\{\sum_{j \in S} v_j \mid S \subseteq \{1,\ldots,i\} \text{ and } \sum_{j \in S} w_j = w\}$$

4 to solve KNAPSACK is suffices to pick an entry greater than or equal the goal K; this can be done in time $\mathcal{O}(nW)$

Content

- Introduction, Problems and Algorithms W 1
- ₩ <u>2</u> Turing machines as algorithms, multiple-string TMs
- ₩3 Random access machines, nondeterministic machines
- W 4 Complexity classes
- ₩ 5 The Hierarchy Theorems
- ₩ 6 Reachability Method
- Savitch's Theorem W-7
- Reductions, completeness, Cook's Theorem W-8
- W-9 NP-complete problems, Variants of SAT
- W 10 Graph-theoretic Problems
- W 11 Hamilton Path
- W 12 Sets and Numbers
- W 13 coNP & Primality
- W 14 Function Problems

Primality

Strong **NP**-completeness

Observation

- all the **NP**-completeness problems considered (except KNAPSACK) used polynomially small integers (in the size of the input)
- the NP-completeness proof for KNAPSACK needed exponentially large integers

Definition

strongly NP-complete

- a problem is called strongly NP-complete if
 - any instance x with n = |x| contains integers of size at most p(n) for a polynomial p

Theorem

CIRCUIT SAT, SAT, ..., INDEPENDENT SET, ..., EXACT COVER BY 3-SETS, ... are all strongly **NP**-complete

LVA 703608 (week 14) LVA 703608 (week 14) Strong NP-completeness NP and coNP Primality Strong NP-completeness NP and coNP Primality

NP and coNP

Definition polynomial verifier

 \bullet A verifier of a language L is an algorithm P such that:

$$L = \{ w \mid \text{there exists a string } c \text{ so that P accepts } \langle w, c \rangle \}$$

• A polynomial verifier is one that runs in time polynomial in |w|

Definition succinct certificates

L has succinct certificates (the string c) if \exists polynomial verifier for L (recall that $|c| \le p(|w|)$ for some polynomial p)

Definition coNP

$$\mathbf{coNP} = \{ \overline{L} \colon L \in \mathbf{NP} \}$$

SM LVA 703608 (week 14)

Strong NP-completeness NP and coNP Primality

Theorem

if L is NP-complete, then its complement \overline{L} is coNP-complete.

Example

VALIDITY and HAMILTON PATH COMPLEMENT are examples of **coNP**-complete problems

Proof Sketch

we indicate the pattern of the proof for VALIDITY

1 we show the existence of a log-space reduction R such that for every $L \in \mathbf{coNP}$: $x \in L$ iff $R(x) \in \mathsf{VALIDITY}$:

$$x \in L$$
iff $x \notin \overline{L}$ Note that $\overline{L} \in \mathbf{NP}$ iff $S(x) \notin SAT$ NP-completeness of SATiff $\neg S(x)$ is valid S a log-space reductioniff $\neg S(x) \in VALIDITY$

2 set $R(x) := \neg S(x)$

Observation

- suppose $L \in \mathbf{coNP}$, and a string x such that $x \notin L$
- then $x \in \overline{\mathbf{L}}$, which implies the existence of a succinct certificate c
- hence the "no"-instance x has a succinct disqualification

Example

VALIDITY = $\{\varphi \colon \varphi \text{ is a valid CNF-formula}\}$

- 1 if φ is not valid, then the disqualification is an assignment T, such that $T(\varphi)=$ false
- 2 the disqualification is succinct, i.e. it is at most polynomial in the length of the formula

Example

HAMILTON PATH COMPLEMENT =

{ G: G is a directed graph without Hamilton path}

 GM
 LVA 703608 (week 14)

 Strong NP-completeness
 NP and coNP
 Primal

Theorem

if a coNP-complete problem L is in NP, then NP = coNP

Proof

we show: $coNP \subseteq NP$:

- consider $L' \in \mathbf{coNP}$
- \exists reduction R from L' to L

Theorem

if \exists NP-complete problem L such that its complement \overline{L} is in NP, then NP = coNP

Theorem

if $NP \neq coNP$, then $P \neq NP$

Proof

- f 1 assume to the contrary that f P = f NP
- 2 as P is closed under complement, we have P = coP = coNP

LVA 703608 (week 14)

 \blacksquare hence, we conclude NP = coNP

Observation

$NP \cap coNP$

- problems in **NP** have succinct certificates
- problems in coNP have succinct disqualifications
- thus for $L \in \mathbf{NP} \cap \mathbf{coNP}$ each *yes* instance as a succinct certificate and each *no* instance has a succinct disqualification clearly no instance has both

Example

consider the language PRIMES:

 $PRIMES = \{p : p \text{ is a prime number}\}\$

Theorem

Pratt

PRIMES \in **NP** \cap **coNP**, i.e., for each number n:

- either, we have a certificate that shows that n is not a prime
- or, we have a certificate that shows that *n* is a prime

VA 703608 (week 14)

NP and coNP

Primality

Strong NP-completeness

LVA 703000 (Week 14

Primality

Theorem

Strong NP-completeness

A number p>1 is prime iff there is a number $r\in\{2,\ldots,p-1\}$ such that $r^{p-1}=1\mod p$, and $r^{\frac{p-1}{q}}\neq 1\mod p$ for all prime divisors q of p-1; r is called primitive root

Proof Idea

employ Fermat's (small) Theorem for all $r \in \{1, ..., p-1\}$: $r^{p-1} = 1 \mod p$

Theorem

 $PRIMES \in NP$

Proof

the certificate consists of

- 1 the primitive root r
- 2 the prime divisors q_1, \ldots, q_k
- 3 primality certificates for qi

Disqualification & Qualification for PRIMES

Fact

the obvious $\mathcal{O}(\sqrt{n})$ is pseudopolynomial \sqrt{n} is not a polynomial in $|(n)_2|$

Theorem

 $PRIMES \in coNP$

Proof

given p

- the string that disqualifies p is a pair $((u)_2, (v)_2)$ such that $p = u \cdot v$
- the length of the disqualification is polynomial in the length of p

Nondeterministic Algorithm

given p (in binary)

- 11 if p = 2, accept; if p > 2 and p even, reject
- 2 guess prime factorisation of $p-1=q_1^{k_1}\cdots q_m^{k_m}$ verify by multiplication
- **3** guess $r \in \{2, \dots, p-1\}$ and verify that $r^{p-1} = 1 \mod p$
- 4 verify for each i: $r^{\frac{p-1}{q_i}} \neq 1 \mod p$
- 5 recursively verify that q_1, \ldots, q_m are prime

Observation

step 1 is constant; step 2 polynomial in $\log p$; steps 3 & 4 can be performed in polytime (in $\log n$) by repeatedly squaring; solving the recursion yields a polytime algorithm

Strong NP-completeness NP and coNP Primality

Succinct Certificate

alternatively the data of the algorithm can be collected in a succint certificate $C(p) = (r; q_1, C(q_1), \dots)$

$$C(67) = (2; 2, (1), 3, (2; 2, (1)), 11, (8; 2, (1), 5, (3; 2, (1))))$$

Theorem

Agrawal, Kayal, Saxena

 $\mathsf{PRIMES} \in \mathbf{P}$

"Proof Idea

suppose a and p are coprime, then p is prime iff

$$(x-a)^p \equiv (x^p - a) \mod p$$

1 LVA 703608 (week 14)

17

