Algorithm Theory

Georg Moser

Institute of Computer Science @ UIBK
Summer 2007

LVA 703608 (week 15)

Content

W 1	Introduction, Problems and Algorithms
W 2	Turing machines as algorithms, multiple-string TMs
W 3	Random access machines, nondeterministic machines
W 4	Complexity classes
W 5	The Hierarchy Theorems
W 6	Reachability Method
W 7	Savitch's Theorem
W 8	Reductions, completeness, Cook's Theorem
W 9	AP complete problems, Variants of SAT
W 10	Graph-theoretic Problems
W 11	Hamilten Path
W 12	Sets and Numbers
W 13	coNP \& Primality
W 14	Function Problems

Function Problems: FSAT

Definition
FSAT is the problem:
1 given a formula φ in conjunctive normal form (CNF)
2 find a satisfying assignment for φ
Theorem
given a polynomial algorithm for SAT, we can define a polynomial algorithm for FSAT

Proof
call the hypothetical program that decides SAT H
assume φ contains the variables $\left\{x_{1}, \ldots, x_{n}\right\}$
Idea

- apply H repeatedly
- test suitable variable assignments at each stage

Algorithm

1 call H on φ
if H fails: stop
2 divide φ into $\varphi_{1}=\varphi\left[x_{1}=\right.$ true] and $\varphi_{2}=\varphi\left[x_{1}=\right.$ false $]$
3 use H to decide whether φ_{1} or φ_{2} is satisfiable
4 fix the partial assignment T accordingly and repeatif all variables are exhausted: stop

- a relation R is called polynomially decidable
if \exists DTM deciding $\{x ; y:(x, y) \in R\}$
- R is called polynomially balanced
if $(x, y) \in R$ implies $|y| \leqslant|x|^{k}$ for some $k \geqslant 1$

Characterising NP

let $\mathrm{L} \subseteq \Sigma^{*}$ be a language
Theorem
$\mathrm{L} \in \mathbf{N P}$ if and only if
\exists polynomially decidable and polynomially balanced relation R with $\mathrm{L}=\{x:(x, y) \in R\}$

Proof Sketch
\Rightarrow any relation decided by a polynomial verifier is balanced, as the verifier can read at most polynomially many letters (in $|x|$) of the certificate
\Leftarrow employ the DTM as polynomial verifier

Function Problems: In relation to NP

given

- let $\mathrm{L} \in \mathbf{N P}$
- assume R_{L} is a polynomially decidable and balanced relation

Definition

> function problems

- the function problem $F \mathrm{~L}$ associated with L is the problem:

1 given x
2 if $\exists y$ with $R_{\mathrm{L}}(x, y)$ find y otherwise return no

- note, the function problem is described by the relation

Example
FSAT is the function problem associated with SAT
use the polynomially balanced relation for SAT

Definition

- $\mathbf{F N P}=\{F \mathrm{~L} \mid \mathrm{L} \in \mathbf{N P}\}$
- FP $\subseteq \mathbf{F N P}$ such that we only consider problems in FNP solvable in polytime

Example
 FSAT \in FNP

Definition

logspace reduction
A reduces to B, if

- \exists functions $R: \Sigma^{*} \rightarrow \Sigma^{*}$ and $S: \Sigma^{*} \rightarrow \Sigma^{*}$
R, S logspace computable
- if x an instance of A
then $R(x)$ an instance of B
- if z is a correct output of B on $R(x)$
then $S(z)$ is a correct output of A on x

The FP \neq FNP problem

Definition
FNP-completeness
a function problem A is complete for FNP
if $A \in$ FNP, and all problems in FNP reduce (in logspace) to A
Theorem
FSAT is FNP-complete
Theorem
$\mathbf{F P}=\mathbf{F N P}$ iff $\mathbf{P}=\mathbf{N P}$.

Proof Sketch

\Rightarrow by definition, i.e., the function problem is "stronger"
\Leftarrow assume $\mathbf{N P}=\mathbf{P}$, in particular SAT $\in \mathbf{P}$ as FSAT is FNP-complete, we only need to show FSAT $\in \mathbf{F P}$ however $S A T \in \mathbf{P}$ implies FSAT $\in \mathbf{F P}$

Total Functions

Definition

total function

- a problem R in FNP is total if
\forall strings x
\exists at least one string y such that $R(x, y)$
- this subclass is denoted as TFNP

Remark
total function problems correspond to the language $\mathrm{L}=\Sigma^{*}$ hence the corresponding decision problem is meaningless

Example
FACTORING
1 given an integer n
12 find its prime decomposition $n=p_{1}{ }^{k_{1}} \cdots p_{m}{ }^{k_{m}}$ together with primality certificates for p_{1}, \ldots, p_{m} GM

