Algorithm Theory

Georg Moser Mircea Dan Hernest

Institute of Computer Science @ UIBK

Summer 2007

Turing Machines

A (1-string) Turing machine (TM) M is a quadruple (K, Σ, δ, s)
$1 K$ finite set of states
2Σ finite alphabet (disjoint from K) contains always \sqcup, \triangleright
3δ is the transition function

$$
\delta: K \times \Sigma \rightarrow(K \cup\{h, \text { yes, no }\}) \times \Sigma \times\{\leftarrow, \rightarrow,-\}
$$

$4 s$ is the initial state

Restriction: If $\delta(p, \triangleright)=(p, \rho, D)$, then $\rho=\triangleright$ and $D=\longrightarrow$ Input x of M is written next to \triangleright.
\Rightarrow if M reaches h, it is halting
\Rightarrow the output y is the string of M at halting $M(x)=y$

- if it reaches yes, it accepts $M(x)=y e s$
\Rightarrow if it reaches no it rejects $M(x)=n o$

Example: TM for binary successor

$$
p \in K \quad \sigma \in \Sigma \quad \delta(p, \sigma)
$$

s	0	$(s, 0, \rightarrow)$
s	1	$(s, 1, \rightarrow)$
s	\sqcup	(q, \sqcup, \leftarrow)
s	\triangleright	$(s, \triangleright, \rightarrow)$
q	0	$(h, 1,-)$
q	1	$(q, 0, \leftarrow)$
q	\triangleright	$(h, \triangleright, \rightarrow)$

\Rightarrow Question 11011?
\Rightarrow Anwer : 11100
\Rightarrow Question : What happens on input 1111?

Turing Machine for palindromes

$p \in K$	$\sigma \in \Sigma$	$\delta(p, \sigma)$
s	0	$\left(q_{0}, \triangleright, \rightarrow\right)$
s	1	$\left(q_{1}, \triangleright, \rightarrow\right)$
s	\triangleright	$(s, \triangleright, \rightarrow)$
s	\sqcup	$(y e s, \sqcup,-)$
q_{0}	0	$\left(q_{0}, 0, \rightarrow\right)$
q_{0}	1	$\left(q_{0}, 1, \rightarrow\right)$
q_{0}	\sqcup	$\left(q_{0}^{\prime}, \sqcup, \leftarrow\right)$
q_{1}	0	$\left(q_{1}, 0, \rightarrow\right)$
q_{1}	1	$\left(q_{1}, 1, \rightarrow\right)$
q_{1}	\sqcup	$\left(q_{1}^{\prime}, \sqcup, \leftarrow\right)$

$p \in K \quad \sigma \in \Sigma$	$\delta(p, \sigma)$

q_{0}^{\prime}	0	(q, \sqcup, \leftarrow)
q_{0}^{\prime}	1	$(n o, 1,-)$
q_{0}^{\prime}	\triangleright	$(y e s, \triangleright, \rightarrow)$
q_{1}^{\prime}	0	$(n o, 1,-)$
q_{1}^{\prime}	1	(q, \sqcup, \leftarrow)
q_{1}^{\prime}	\triangleright	$(y e s, \triangleright, \rightarrow)$
q	0	$(q, 0, \leftarrow)$
q	1	$(q, 1, \leftarrow)$
q	\triangleright	$(s, \triangleright, \rightarrow)$

Configuration

\Rightarrow a configuration of M is
$1 q$ is the state
$2 w$ is the string to the left of the cursor, including the symbol scanned by the cursor
$3 u$ is the string to the right
consider M on 0010:
$(s, \triangleright, 0010) \quad\left(q_{0}, \triangleright \triangleright 010 \sqcup, \epsilon\right) \quad\left(q_{0}^{\prime}, \triangleright \triangleright 010, \sqcup\right) \quad(q, \triangleright \triangleright 01, \sqcup \sqcup)$
$\Rightarrow(q, w, u) \xrightarrow{\mathrm{M}}\left(q^{\prime}, w^{\prime}, u^{\prime}\right)$ one step from (q, w, u) to $\left(q^{\prime}, w^{\prime}, u^{\prime}\right)$ yields in one step
$\Rightarrow(q, w, u) \xrightarrow{\mathrm{M}^{k}}\left(q^{\prime}, w^{\prime}, u^{\prime}\right) k$ steps yield $\left(q^{\prime}, w^{\prime}, u^{\prime}\right)$ from (q, w, u) yields in k steps
$-(q, w, u) \xrightarrow{\mathrm{M}^{*}}\left(q^{\prime}, w^{\prime}, u^{\prime}\right)$ exists $k,(q, w, u) \xrightarrow{\mathrm{M}^{k}}\left(q^{\prime}, w^{\prime}, u^{\prime}\right)$. yields

Turing Machines as Algorithms

$\mathrm{L} \subseteq(\Sigma-\{\triangleright, \sqcup\})^{*}$ be a language, M a TM with
$1 \forall$ strings $x \in(\Sigma-\{\triangleright, \sqcup\})^{*}$: if $x \in \mathrm{~L}$, then $\mathrm{M}(x)=y e s$, and if $x \notin \mathrm{~L}$, then $\mathrm{M}(x)=$ no
2 M decides L ; L is called recursive (or decidable)

M be a TM with
$1 \forall$ strings $x \in(\Sigma-\{\triangleright, \sqcup\})^{*}$: if $x \in \mathrm{~L}$, then $\mathrm{M}(x)=y e s$, and if $x \notin \mathrm{~L}$, then M does not terminate
2 M accepts L ; L is called recursive enumerable (or semi-decidable)

Fact If L is recursive, then it is recursive enumerable
$f:(\Sigma-\{\triangleright, \sqcup\})^{*} \rightarrow \Sigma^{*}, M$ be a TM (over $\left.\Sigma\right)$, with
$1 \forall$ strings $x \in(\Sigma-\{\triangleright, \sqcup\})^{*}: M(x)=f(x)$
$2 M$ computes $f ; f$ is called recursive

Many-string Turing Machine

Representation

To solve a problem by a TM, we have to fix a representation of an instance of the problem as string.
\Rightarrow All reasonable representations are polynomially related Unary coding is not reasonable
\Rightarrow Convention: Numbers will always be represented in binary.

Definition

A k-string Turing machine M is a quadruple (K, Σ, δ, s).
$1 K, \Sigma$ as before.
2δ is a function

$$
\delta: K \times \Sigma^{k} \rightarrow(K \cup\{h, \text { yes, no }\}) \times(\Sigma \times\{\leftarrow, \rightarrow,-\})^{k}
$$

3 If M computes a function, the output is written on the last string.

Example: TM for palindromes (faster version)

$p \in K$	$\sigma_{1} \in \Sigma$	$\sigma_{2} \in \Sigma$	$\delta\left(p, \sigma_{1}, \sigma_{2}\right)$
s	0	\sqcup	$(s, 0, \rightarrow, 0, \rightarrow)$
s	1	\sqcup	$(s, 1, \rightarrow, 1, \rightarrow)$
s	\triangleright	\triangleright	$(s, \triangleright, \rightarrow, \triangleright, \rightarrow)$
s	\sqcup	\sqcup	$(q, \sqcup, \leftarrow, \sqcup,-)$
q	0	\sqcup	$(q, 0, \leftarrow, \sqcup,-)$
q	1	\sqcup	$(q, 1, \leftarrow, \sqcup,-)$
q	\triangleright	\sqcup	$(p, \triangleright, \rightarrow, \sqcup, \leftarrow)$
p	0	0	$(p, 1, \rightarrow, \sqcup, \leftarrow)$
p	1	1	$(p, 1, \rightarrow, \sqcup, \leftarrow)$
p	0	1	$(n o, 1,-, \sqcup,-)$
p	1	0	$(n o, 1,-, \sqcup,-)$
p	\sqcup	\triangleright	$(y e s, \sqcup,-, \triangleright, \rightarrow)$

Configuration (cont'd)

\Rightarrow A configuration of a k-string TMis

$$
\left(q, w_{1}, u_{1}, \ldots, w_{k}, u_{k}\right)
$$

$11 q$ is the state
[2 $w_{i} u_{i}$ is the $i^{t h}$ string
3 the cursor points to the last symbol in w_{i}
$\Rightarrow\left(q, w_{1}, u_{1}, \ldots, w_{k}, u_{k}\right) \xrightarrow{M}\left(q^{\prime}, w_{1}^{\prime}, u_{1}^{\prime}, \ldots, w_{k}^{\prime}, u_{k}^{\prime}\right) \quad$ one step from ($q, w_{1}, u_{1}, \ldots, w_{k}, u_{k}$) to ($q^{\prime}, w_{1}^{\prime}, u_{1}^{\prime}, \ldots, w_{k}^{\prime}, u_{k}^{\prime}$)
$\Rightarrow\left(q, w_{1}, u_{1}, \ldots, w_{k}, u_{k}\right) \xrightarrow{\mathrm{M}^{\prime}}\left(q^{\prime}, w_{1}^{\prime}, u_{1}^{\prime}, \ldots, w_{k}^{\prime}, u_{k}^{\prime}\right) \quad$ I steps
$\boldsymbol{=}\left(q, w_{1}, u_{1}, \ldots, w_{k}, u_{k}\right) \xrightarrow{\mathrm{M}^{*}}\left(q^{\prime}, w_{1}^{\prime}, u_{1}^{\prime}, \ldots, w_{k}^{\prime}, u_{k}^{\prime}\right) \quad$ yields
Consider the 2 -string TM M for palindromes:

$$
(s, \triangleright, 0010, \triangleright, \epsilon) \xrightarrow{M}(s, \triangleright 0,010, \triangleright \sqcup, \epsilon) \xrightarrow{M^{*}}(q, \triangleright 0010, \sqcup, \triangleright 0010, \sqcup)
$$

Time Complexity

\Rightarrow If for a k-string Turing machine M and input x we have

$$
(s, \triangleright, x, \triangleright, \epsilon, \ldots, \triangleright, \epsilon) \xrightarrow{\mathrm{M}^{t}}\left(H, w_{1}, u_{1}, \ldots, w_{k}, u_{k}\right)
$$

then the time required by M is t

$$
(H \in\{h, y e s, n o\})
$$

$\Rightarrow \mathrm{M}$ operates within time $f(n)$ if, for any input string x, the time required is at most $f(|x|)$
$-\mathrm{L} \in \operatorname{TIME}(f(n))$
if L is decided by a multi-string M operating in time $f(n)$

Example: Palindromes

The 1-string Turing machines M for palindromes operates in $\left\lceil\frac{n}{2}\right\rceil$ stages and
\Rightarrow first stage: $2 n+1$ steps to compare 1 st and last symbol
\Rightarrow second stage: $2(n-2)+1$ steps to compare 1 st and last symbol

In total

$$
(2 n+1)+(2 n-3)+\cdots=\frac{(n+1)(n+2)}{2}=f(n)
$$

Fact

1 The language L of all palindromes is in $\operatorname{TIME}(f(n))$ $=\operatorname{TIME}\left(\mathcal{O}\left(n^{2}\right)\right)$
12 And with the 2-string Turing machine in $\operatorname{TIME}(\mathcal{O}(n))$

Theorem

Given any k-string Turing machine M operating within time $f(n)$, we can construct a Turing machine M^{\prime} operating within time $\mathcal{O}\left(f(n)^{2}\right)$ and $\mathrm{M}(x)=\mathrm{M}^{\prime}(x)$.
Proof
Define $\mathrm{M}^{\prime}=\left(K^{\prime}, \Sigma^{\prime}, \delta^{\prime}, s\right) \quad \Sigma^{\prime}=\Sigma \cup \underline{\Sigma} \cup\left\{\triangleright^{\prime}, \triangleleft, \triangleleft^{\prime}\right\}$
Configuration

$$
\left(q, w_{1}, u_{1}, \ldots, w_{k}, u_{k}\right)
$$

in M , becomes

$$
\left(q, \triangleright, w_{1}^{\prime} u_{1} \triangleleft w_{2}^{\prime} u_{2} \triangleleft \cdots w_{k}^{\prime} u_{k} \triangleleft \triangleleft\right)
$$

w_{i}^{\prime} equals w_{i} with \triangleright replaced by \triangleright^{\prime} and last symbol σ_{i} by $\underline{\sigma_{i}}$. Initial phase.

1 Shift input to the right, precede with \triangleright^{\prime}
2 Write $\triangleleft\left(\triangleright^{\prime} \triangleleft\right)^{k-1} \triangleleft$ after the input

Simulation a move in M
$1 \mathrm{M}^{\prime}$ scans its string and "remembers" the k currently scanned symbols in M ; remembering is done, by introducing new states that represent the states of M and the scanned symbols
$2 M^{\prime}$ scans its string again and simulates one step of M
3 If one of the strings is extended in $\mathrm{M}, \mathrm{M}^{\prime}$ has to move everything after it to the right
\Rightarrow Replace currently scanned \triangleleft by \triangleleft^{\prime}
\Rightarrow go to the right side (marked by $\triangleleft \triangleleft$)
\Rightarrow move everything to the right
\Rightarrow when we reach \triangleleft^{\prime}, replace by $\sqcup \triangleleft$

Fact

total length of the string of \mathbf{M}^{\prime} is never more than $k(f(|x|)+1)+1$
Simulating a move at most costs

$$
(4 k(f(|x|)+1)+4 \text { steps })+(3 k(f(|x|)+1)+3 \text { steps }) \cdot k
$$

In total, the (worst-case) time-complexity is

$$
\mathcal{O}\left(k^{2} f(|x|)^{2}\right)=\mathcal{O}\left(f(|x|)^{2}\right)
$$

