Algorithm Theory

Georg Moser Mircea Dan Hernest

Institute of Computer Science @ UIBK
Summer 2007

Theorem
\Rightarrow Let $\mathrm{L} \in \operatorname{TIME}(f(n))$
$\Rightarrow \exists C \geqslant 0, \forall c>0$ such that
$\Rightarrow \mathrm{L} \in \operatorname{TIME}\left(f^{\prime}(n)\right)$ with $f^{\prime}(n)=c \cdot f(n)+n+\left\lceil\frac{c}{6}\right\rceil \cdot n+C$
Proof
Let $\mathrm{M}=(K, \Sigma, \delta, a)$ be a k-string TM that decides $\mathrm{L}, m \in \mathbb{N}$
Define $\mathrm{M}^{\prime}=\left(K^{\prime}, \Sigma^{\prime}, \delta^{\prime}, s\right)$ with

$$
\Sigma^{\prime}=\Sigma \cup \Sigma^{m}
$$

Initialisation

1 Read blocks of input $\left(a_{1}, \ldots, a_{m}\right)$ of length m
2 write them as one symbol on the second string
3 If necessary "padd" blocks
Fact
We use extra states of form $\{s\} \times \Sigma^{i}$ for all $i \in[1, m-1]$

Time Complexity Revisited

Reminder

$\Rightarrow \mathrm{L} \in \operatorname{TIME}(f(n))$,
if L is decided by a multi-string M operating in time $f(n)$

Fact

PALINDROMES $\in \operatorname{TIME}(\mathcal{O}(n))$
"Theorem"
Linear Speed-Up Theorem
\Rightarrow Assume \exists TM M deciding L within time-bound $f(n)$
\Rightarrow Then $\forall d>0, \exists n_{0} \in \mathbb{N}, \exists$ TM M^{\prime} deciding L in time-bound $d \cdot f(n)$ for all $n \geqslant n_{0}$

Corollary
PALINDROMES $\in \operatorname{TIME}(n)$
GM LVA 703608 (week 3)
Speed-Up Theorem

Simulation

$\Rightarrow M^{\prime}$ simulates m steps of M by at most six steps
The simulation proceeds in stages
Encoding of States in k-string TM M
State of M in the current stage is described by
$\boldsymbol{1}\left(q, j_{1}, \ldots, j_{k}\right)$
2 $j_{i} \leqslant m$ is the position of the cursor on the $i^{t h}$ tape within the scanned m-tuple

Stage

$\Rightarrow \mathrm{M}^{\prime}$ checks the surroundings m-blocks 4 steps by moving to the left and twice to the right, left once

- Based on this M^{\prime} simulates m moves of M

Fact

We use extra states of form $K \times\{1, \ldots, m\}^{k} \times \Sigma^{3 m k} \quad K^{\prime}$
Each stage of simulation needs 6 steps

Speed-Up Theorem \qquad

Total Number of Steps

\Rightarrow Initial Phase
\Rightarrow Prepare Simulation moving the cursor to the left
\Rightarrow Simulation

- Auxilliary Steps
$|x|+1$ steps
$\left\lceil\frac{|x|}{m}\right\rceil+1$ steps
$6\left\lceil\frac{f(|x|)}{m}\right\rceil$

Hence in total:

$$
6\left\lceil\frac{f(|x|)}{m}\right\rceil+|x|+\left\lceil\frac{|x|}{m}\right\rceil+8
$$

Setting $m=\frac{6}{c}, n=|x|, C=8$ yields:

$$
\begin{aligned}
6\left\lceil\frac{f(n}{m}\right\rceil+|x|+\left\lceil\frac{n}{m}\right\rceil+8 & =c f(n)+n+\frac{c n}{6}+8 \\
& \leqslant c f(n)+n+\left\lceil\frac{c}{6}\right\rceil n+C \\
& =: f^{\prime}(n)
\end{aligned}
$$

Linear Speed-Up Theorem

Theorem
\Rightarrow Assume \exists тМ M deciding L within time-bound $f(n)$, and $f(n)=\omega(n)$
\Rightarrow Then $\forall d>0, \exists n_{0} \in \mathbb{N}, \exists$ TM M^{\prime}
deciding L in time-bound $d \cdot f(n)$ for all $n \geqslant n_{0}$

Small o-Notation

$f(n)$ is small-o of $g(n)$
$\Rightarrow \forall c>0, \exists n_{c} \in \mathbb{N}$ such that
$\forall n \geqslant n_{c}: f(n)<c \cdot g(n)$
Then $f(n)=o(g(n))$

- Equivalent to

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0
$$

- $f(n)=\omega(g(n))$, if $g(n)=o(f(n))$

Proof

(of Linear Speed-Up Theorem)
Assume
$\Rightarrow \mathrm{L}$ is decided by a k-string TM M in time $f(n)$, and
$\Rightarrow f(n)=\omega(n)$, i.e., $n=o(f(n))$.
Then
$\Rightarrow \exists k^{\prime}$-string TM M ${ }^{\prime} \quad\left(k^{\prime}=k\right.$ or $\left.k^{\prime}=2\right)$
deciding L in time $c f(n)+n+\left\lceil\frac{c}{6}\right\rceil n+8$,
where $c>0$ arbitrary

$$
\begin{aligned}
c f(n)+n+\left\lceil\frac{c}{6}\right\rceil n+8 & =c f(n)+\left(1+\left\lceil\frac{c}{6}\right\rceil\right) n+8 \\
& \leqslant c f(n)+c f(n)+c f(n) \\
& \leqslant 3 c f(n) \quad \text { (almost everywhere) }
\end{aligned}
$$

- Set $c=\frac{d}{3}$ to achieve the theorem

$$
n<c \cdot(k n)
$$

Corollary

We can freely use the \mathcal{O}-notation in time bounds

TM with input and output

Definition

A k-string TM with input and output is a k-string TM but if

$$
\delta\left(q, \sigma_{1}, \ldots, \sigma_{k}\right)=\left(p, \rho_{1}, D_{1}, \ldots, \rho_{k}, D_{k}\right)
$$

Then

$$
\begin{array}{ll}
1 & \rho_{1}=\sigma_{1} \\
2 & \text { input read-only } \\
2 D_{k} \neq \leftarrow & \text { output write-only } \\
\text { 3 if } \sigma_{1}=\sqcup \text { then } D_{1}=\leftarrow &
\end{array}
$$

Theorem

$\Rightarrow \forall k$-string TM M, operating within time bound $f(n) \geqslant n$
$\Rightarrow \exists(k+2)$-string TM with input and output, operating in time bound $\mathcal{O}(f(n))$

Space Bounds

Suppose

$(s, \triangleright, x, \ldots, \triangleright, \epsilon) \xrightarrow{\mathrm{M}^{*}}\left(H, w_{1}, u_{1}, \ldots, w_{k}, u_{k}\right) \quad H \in\{h$, yes, no $\}$
\Rightarrow Space required by M on input x is

$$
\sum_{i=1}^{k}\left|w_{i} u_{i}\right|
$$

\Rightarrow If M is TM with input and output,
then space required by M on input x is

$$
\sum_{i=2}^{k-1}\left|w_{i} u_{i}\right|
$$

$\Rightarrow M$ operates within space bound $f(n)$ if, \forall input x, M requires at most space $f(|x|)$

Space-complexity Classes

Definition
$\Rightarrow \mathrm{L} \in \operatorname{SPACE}(f(n))$,
if \exists TM with input and output that requires at most space-bound $f(n)$, and decides L

Example
PALINDROMES $\in \operatorname{SPACE}(\log n)$
We construct a 3 -string TM M^{\prime} with input and output. M^{\prime} uses the second string to count the number of iterations in binary

1 Move the first cursor to i-th position
12 Read the i-th symbol of input,
Accept, if it is \sqcup, Store the symbol in a state, otherwise
3 Move the first cursor to the last i-th position
4 Compares the i-th symbol and the last i-th symbol, Reject, if they are different

