Algorithm Theory

Georg Moser Mircea Dan Hernest

Institute of Computer Science @ UIBK

Summer 2007

Speed-Up Theorem Space Bounds

Theorem

- ightharpoonup Let $L \in \mathsf{TIME}(f(n))$
- $ightharpoonup \exists C \geqslant 0, \forall c > 0 \text{ such that}$
- ightharpoonup L \in **TIME**(f'(n)) with $f'(n) = c \cdot f(n) + n + \lceil \frac{c}{6} \rceil \cdot n + C$

Proof

Let $M = (K, \Sigma, \delta, a)$ be a k-string TM that decides $L, m \in \mathbb{N}$

Define $M' = (K', \Sigma', \delta', s)$ with M′

Σ' $\Sigma' = \Sigma \cup \Sigma^m$

Initialisation

- 1 Read blocks of input (a_1, \ldots, a_m) of length m
- 2 write them as one symbol on the second string
- If necessary "padd" blocks

Fact

We use extra states of form $\{s\} \times \Sigma^i$ for all $i \in [1, m-1]$ K'Initialisation needs |x| + 1 steps

Time Complexity Revisited

Reminder

 \rightarrow L \in **TIME**(f(n)), if L is decided by a multi-string M operating in time f(n)

Fact

PALINDROMES \in **TIME**($\mathcal{O}(n)$)

"Theorem"

Linear Speed-Up Theorem

- \rightarrow Assume \exists TM M deciding L within time-bound f(n)
- ightharpoonup Then $\forall d > 0, \exists n_0 \in \mathbb{N}, \exists \mathsf{TM} \mathsf{M}'$ deciding L in time-bound $d \cdot f(n)$ for all $n \ge n_0$

Corollary

PALINDROMES \in **TIME**(n)

Speed-Up Theorem

Space Bounds

Simulation

 \rightarrow M' simulates m steps of M by at most six steps

The simulation proceeds in stages

Encoding of States in k-string TM M

State of M in the current stage is described by

K'

2 steps

- $\mathbf{1}$ (q, j_1, \ldots, j_k)
- $|\mathbf{z}|_{i} \leq m$ is the position of the cursor on the i^{th} tape within the scanned *m*-tuple

Stage

- → M' checks the surroundings *m*-blocks 4 steps by moving to the left and twice to the right, left once
- Based on this M' simulates m moves of M

Fact

We use extra states of form $K \times \{1, ..., m\}^k \times \Sigma^{3mk}$ K'Each stage of simulation needs 6 steps

LVA 703608 (week 3)

Speed-Up Theorem Small o-Notation Space Bounds Speed-Up Theorem Small o-Notation Space Bounds

Total Number of Steps

→ Initial Phase |x| + 1 steps

⇒ Prepare Simulation $\lceil \frac{|x|}{m} \rceil + 1$ steps moving the cursor to the left

Simulation $6\lceil \frac{f(|x|)}{m} \rceil$

→ Auxilliary Steps

Hence in total:

$$6\lceil \frac{f(|x|)}{m} \rceil + |x| + \lceil \frac{|x|}{m} \rceil + 8$$

Setting $m = \frac{6}{c}$, n = |x|, C = 8 yields:

$$6\lceil \frac{f(n)}{m} \rceil + |x| + \lceil \frac{n}{m} \rceil + 8 = cf(n) + n + \frac{cn}{6} + 8$$

$$\leq cf(n) + n + \lceil \frac{c}{6} \rceil n + C$$

$$=: f'(n)$$

Speed-Up Theorem Small o-Notation Space Bounds

Examples: Small o-Notation

Example

We have $k \cdot n = o(n \cdot \log n)$, i.e.

- ightharpoonup let c > 0 be arbitrary
- \rightarrow \exists n_c and \forall $n \geqslant n_c$:

$$k \cdot n < c \cdot (n \cdot \log n)$$

Example

But $n \neq o(k \cdot n)$

Assume otherwise, i.e.,

- $\rightarrow \forall c > 0 \exists n_c$
- $\rightarrow \forall n \geqslant n_c$

$$n < c \cdot (kn)$$

Linear Speed-Up Theorem

Theorem

- Assume \exists TM M deciding L within time-bound f(n), and $f(n) = \omega(n)$
- Then $\forall d > 0, \exists n_0 \in \mathbb{N}, \exists TM M'$ deciding L in time-bound $d \cdot f(n)$ for all $n \ge n_0$

Small o-Notation

f(n) is small-o of g(n)

 $ightharpoonup \forall c>0$, $\exists n_c\in\mathbb{N}$ such that

$$\forall n \geqslant n_c$$
: $f(n) < c \cdot g(n)$

Then f(n) = o(g(n))

Equivalent to

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0$$

 $\Rightarrow f(n) = \omega(g(n)), \text{ if } g(n) = o(f(n))$

Speed-Up Theorem

C---II - N-+-+:--

Space Bounds

Proof

(of Linear Speed-Up Theorem)

Assume

- ightharpoonup L is decided by a k-string TM M in time f(n), and
- \rightarrow $f(n) = \omega(n)$, i.e., n = o(f(n)).

Then

⇒ \exists k'-string TM M' (k' = k or k' = 2) deciding L in time $cf(n) + n + \lceil \frac{c}{6} \rceil n + 8$, where c > 0 arbitrary

$$cf(n) + n + \lceil \frac{c}{6} \rceil n + 8 = cf(n) + (1 + \lceil \frac{c}{6} \rceil) n + 8$$

$$\leq cf(n) + cf(n) + cf(n)$$

$$\leq 3cf(n) \quad (almost everywhere)$$

LVA 703608 (week 3)

Set $c = \frac{d}{3}$ to achieve the theorem

Corollary

We can freely use the \mathcal{O} -notation in time bounds

GM LVA 703608 (week 3) 32 GM

TM with input and output

Definition

A k-string TM with input and output is a k-string TM but if

$$\delta(q,\sigma_1,\ldots,\sigma_k)=(p,\rho_1,D_1,\ldots,\rho_k,D_k)$$

Then

1 $\rho_1 = \sigma_1$ 2 $D_k \neq \leftarrow$ input read-only output write-only

 $\sigma_1 = \sqcup \text{ then } D_1 = \leftarrow$

Theorem

- → \forall k-string TM M, operating within time bound $f(n) \ge n$
- \Rightarrow \exists (k+2)-string TM with input and output, operating in time bound $\mathcal{O}(f(n))$

GM Speed-Up Theorem

LVA 703006 (Week 3)

Space Bounds

Space-complexity Classes

Definition

SPACE(f(n))

⇒ $L \in \mathsf{SPACE}(f(n))$, if $\exists \mathsf{TM}$ with input and output that requires at most space-bound f(n), and decides L

Example

PALINDROMES \in **SPACE**(log n)

We construct a 3-string TM M' with input and output. M' uses the second string to count the number of iterations in binary

LVA 703608 (week 3)

- 1 Move the first cursor to *i*-th position
- **2** Read the i-th symbol of input, Accept, if it is \square , Store the symbol in a state, otherwise
- 3 Move the first cursor to the last *i*-th position
- Compares the i-th symbol and the last i-th symbol, Reject, if they are different

Speed-Up Theorem Small o-Notation Space Bounds

Space Bounds

Suppose

$$(s, \triangleright, x, \ldots, \triangleright, \epsilon) \xrightarrow{\mathsf{M}^*} (H, w_1, u_1, \ldots, w_k, u_k) \quad H \in \{h, yes, no\}$$

Space required by M on input x is

$$\sum_{i=1}^{k} |w_i u_i|$$

→ If M is TM with input and output, then space required by M on input x is

$$\sum_{i=2}^{k-1} |w_i u_i|$$

 \rightarrow M operates within space bound f(n) if, \forall input x, M requires at most space f(|x|)

LVA 703608 (week 3)