



| -                               |                                                                      | 0                                                                                                                           |         |
|---------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------|
| Thesis ①                        |                                                                      |                                                                                                                             |         |
| The class of eff                | fectively c                                                          | computable functions $f: \mathbb{N} \to \mathbb{N}$                                                                         |         |
| coincides with                  | the class of                                                         | of functions computable by a TI                                                                                             | И.      |
| Church-Turing                   | 1936                                                                 |                                                                                                                             |         |
| Thesis ②                        |                                                                      | quantum computers may chang                                                                                                 | e that  |
| All reasonable                  | sequentia                                                            | models of computation have t                                                                                                | he      |
| same time com                   | plexity as                                                           | (deterministic) TM upto a                                                                                                   |         |
| polynomial fact                 | tor.                                                                 |                                                                                                                             |         |
| common knowl                    | edge 🙂                                                               | 1976                                                                                                                        |         |
| 1673+SIGIU                      |                                                                      |                                                                                                                             |         |
| I hesis ③                       |                                                                      | quantum computers may chang                                                                                                 | ge that |
| Tractable probl<br>Cook-Karp 19 | ems are t<br><mark>97</mark> ?                                       | hose that are in the class <b>P</b> .                                                                                       |         |
|                                 |                                                                      |                                                                                                                             |         |
| GM                              | LV/                                                                  | 703608 (week 4)                                                                                                             | 38      |
| Speed-up Theorem                | INAM5                                                                | 11110                                                                                                                       | vermers |
| Random Access                   | Machin                                                               | es                                                                                                                          |         |
|                                 |                                                                      |                                                                                                                             |         |
|                                 |                                                                      | (DAM) consists of an environment                                                                                            |         |
| A random acce                   | ss macnir<br>Iolding an                                              | e (RAM) consists of an array of                                                                                             | or O is |
| the accumulato                  | or                                                                   | arbitrarity large integer, registe                                                                                          | .1 0 15 |
|                                 |                                                                      |                                                                                                                             |         |
| A RAM program                   | $1$     = ( $\pi_1$                                                  | $(\pi_2, \ldots, \pi_m)$ is a sequence of                                                                                   |         |
| instructions, K                 | uenoles l                                                            | ne program counter                                                                                                          |         |
|                                 | 0                                                                    |                                                                                                                             |         |
| Instruction                     | Op                                                                   | Semantics                                                                                                                   |         |
| KEAD<br>STODE                   | $ \begin{array}{c} J  (\mid J) \\ \vdots  (\uparrow i) \end{array} $ | $r_0 := I_j \qquad (r_0 := I_{r_j})$                                                                                        |         |
| 6734SIGI LOAD                   |                                                                      | $\begin{array}{ccc} r_j := r_0 & (r_{r_j} := r_0) \\ r_r := r_r & r_r \in \{i \uparrow i - i\} \end{array}$                 |         |
| ADD                             | X                                                                    |                                                                                                                             |         |
| SUB                             | x                                                                    | $ \begin{array}{c} i_{0} := i_{0} + x  x \in \{j, j, j, j\} \\ r_{0} := r_{0} - x  x \in \{i \uparrow i = i\} \end{array} $ |         |
| HALE                            |                                                                      | $\begin{vmatrix} r_0 := \left  \frac{r_0}{2} \right $                                                                       |         |
|                                 |                                                                      |                                                                                                                             |         |



RAMs



| Speed-up Ineoren | 1 |
|------------------|---|

# Example: Multiple two binary numbers

RAMs

| peed        | l-up The | orem         | RAMs                                      |        | NTN                                         | /ls                              | Verifier          |
|-------------|----------|--------------|-------------------------------------------|--------|---------------------------------------------|----------------------------------|-------------------|
| м           | THE      | al si a si   | LVA                                       | 703608 | (week 4)                                    |                                  | 4                 |
| K           |          | (*) <i>R</i> | $b_2 = i_2$ if $k =$                      | 0,     | $R_2 = \lfloor \frac{l_2}{2^{k-1}} \rfloor$ | if $k > 0$                       |                   |
|             | 11.      | LOAD 4       |                                           |        |                                             |                                  |                   |
| En.<br>1111 | 10.      | JZERO 14     |                                           | 21.    | HALT                                        |                                  |                   |
| 673         | 9.51     | SUB 2        |                                           | 20.    | LOAD 4                                      |                                  |                   |
|             | 8.       | ADD 3        |                                           | 19.    | JUMP 5                                      | (else, repeat)                   |                   |
|             | 7.       | STORE 3      | $(R_3 = \lfloor \frac{i_2}{2^k} \rfloor)$ | 18.    | JZERO 20                                    | (if $R_3 = 0$ done)              |                   |
|             | 6.       | HALF         |                                           | 17.    | LOAD 3                                      |                                  |                   |
|             | 5.       | STORE 2 (*   | ) (loop starts)                           | 16.    | STORE 5                                     |                                  |                   |
|             | 4.       | READ 2       |                                           | 15.    | ADD 5                                       |                                  |                   |
|             | 3.       | STORE 5      | $(R_5=i_12^k)$                            | 14.    | LOAD 5                                      |                                  |                   |
|             | 2.       | STORE 1      | $(R_1=i_1)$                               | 13.    | STORE 4                                     | $(R_4 = i_1 \cdot (i_2 \bmod 2)$ | 2 <sup>k</sup> )) |
|             | 1.       | READ 1       |                                           | 12.    | ADD 5                                       |                                  |                   |
|             |          |              |                                           |        |                                             |                                  |                   |

NTMs

Verifiers

## TM and RAM

#### Theorem

Suppose  $L \in TIME(f(n))$ , then there is a RAM program which computes  $\phi_L$  in time  $\mathcal{O}(f(n))$ 

## Definition

- ➡ Let *I* be a sequence {*i*<sub>1</sub>,..., *i<sub>n</sub>*} of integers we write *b*(*I*) to denote the string (*i*<sub>1</sub>)<sub>2</sub>;...;(*i<sub>n</sub>*)<sub>2</sub>
- → We say a TM *M* computes  $\phi$ : D → int if for any sequence  $I \in D$ :  $M(b(I)) = b(\phi(I))$

#### Theorem

GM

If a RAM program  $\Pi$  computes a function  $\phi$  in time f(n), then there is a 7-string TM M which computes  $\phi$  in time  $\mathcal{O}(f(n)^3)$ 

GM

# Nondeterministic Time

➡ A nondeterministic Turing machine N is a quadruple  $(K, \Sigma, \Delta, s)$  with  $\Delta \colon K \times \Sigma \to \mathcal{P}((K \cup \{h, yes, no\}) \times \Sigma \times \{\leftarrow, \rightarrow, -\})$ 

⇒ *N* decides L if for any  $x \in \Sigma^*$ :

$$x \in L$$
 iff  $(s, \triangleright, x) \xrightarrow{N^*} (yes, w, u)$  for some  $w$  and  $u$ .

$$\forall x \in \Sigma^*:$$

$$(s, \triangleright, x) \xrightarrow{N^t} (q, w, u) \text{ implies } t \leq f(|x|)$$

We write 
$$L \in \mathsf{NTIME}(f(n))$$

LVA 703608 (week 4) 44 NTMs RAMs Speed-up Theorem Verifiers

Define a nondeterministic Turing machine (NTM) M that decides the language L of binary strings ending in the string 01:





N decides L within space f(n) if

**1** N decides L and

GM

$$2 \quad \forall \ x \in (\Sigma - \{\triangleright, \sqcup\})^*:$$

$$(s, \triangleright, x, \dots, \triangleright, \epsilon) \xrightarrow{N^*} (q, w_1, u_1, \dots, w_k, u_k)$$
  
implies  $\sum_{j=2}^{k-1} |w_j u_j| \leq f(|x|)$ 

We write  $L \in NSPACE(f(n))$ 

### **Example** REACHABILITY $\in$ **NSPACE**( $\mathcal{O}(\log n)$ )

1 use 2 strings beside the input

- 2 on the 2nd string write the currently checked node i
- **3** on the 3rd string we write a guess j
- **4** check whether (i, j) is in the graph; repeat

**RAMs** NTMs Verifiers Complexity Classes (continued) Definition **TIME**(f(n)) **SPACE**(f(n)) **NTIME**(f(n)) **NSPACE**(f(n)) We may replace f by a family of functions, parameterised by k $\mathsf{TIME}(n^k) = \bigcup_{i>0} \mathsf{TIME}(n^i) = \mathsf{P}$  $\mathsf{NTIME}(n^k) = \bigcup \mathsf{NTIME}(n^i) = \mathsf{NP}$ Other classes:  $PSPACE = SPACE(n^k)$   $NPSPACE = NSPACE(n^k)$  $EXP = TIME(2^{n^k})$  $L = SPACE(\log n)$   $NL = NSPACE(\log n)$ GM LVA 703608 (week 4) 48 Speed-up Theorem RAMs **NTMs** Verifiers Determinism vs Nondeterminism Example TSP(D) $\mathsf{TSP}(D) \in \mathsf{NP}$  as  $\mathsf{TSP}(D) \in \mathsf{NTIME}(n^2)$ : 1 Use 2 strings 2 Guess a tour on the first string **3** Check the tour on the second string. Theorem Suppose  $L \in \mathsf{NTIME}(f(n))$ Then  ${
m L}$  is also decided by a 3-string deterministic TM Min time  $\mathcal{O}(d^{f(n)})$ d > 1 depends on the NTM N deciding L, i.e.,  $\mathsf{NTIME}(f(n)) \subseteq \bigcup_{d>1} \mathsf{TIME}(d^{f(n)})$ 

## Alternative Definition of NP

