Algorithm Theory

Georg Moser Mircea Dan Hernest

Institute of Computer Science @ UIBK

Summer 2007

173601

 GM
 LVA 703608 (week 4)
 1

 Speed-up Theorem
 RAMs
 NTMs
 Verifiers

Overstitestine Church Turing Thesis

Quantitative Church-Turing Thesis

Thesis ①

The class of effectively computable functions $f: \mathbb{N} \to \mathbb{N}$ coincides with the class of functions computable by a TM. Church-Turing 1936

Thesis ②

quantum computers may change that

All reasonable sequential models of computation have the same time complexity as (deterministic) TM upto a polynomial factor.

common knowledge © 1976

Thesis ③

quantum computers may change that

Tractable problems are those that are in the class P.

Cook-Karp 197?

Speed-up Theorems

Theorem

Linear Speed-Up Theorem (Time)

- Assume \exists TM M deciding L within time-bound f(n), and $f(n) = \omega(n)$
- Then \forall d > 0, \exists $n_0 \in \mathbb{N}$, \exists TM M' deciding L in time-bound $d \cdot f(n)$ for all $n \ge n_0$

Theorem

Linear Speed-Up Theorem (Space)

- Assume \exists TM M deciding L within space-bound f(n), and $f(n) = \omega(1)$
- Then $\forall d > 0$, $\exists n_0 \in \mathbb{N}$, $\exists TM M'$ deciding L in space-bound $d \cdot f(n)$ for all $n \ge n_0$

peed-up Theorem RAMs NTMs V

Random Access Machines

- → A random access machine (RAM) consists of an array of registers each holding an arbitrarily large integer; register 0 is the accumulator
- → A RAM program $\Pi = (\pi_1, \pi_2, ..., \pi_m)$ is a sequence of instructions, κ denotes the program counter

	Instruction		Op	Ser	mantics
	READ	j	(↑ <i>j</i>)	$r_0 := i_j$	$(r_0:=i_{r_j})$
	STORE	j	$(\uparrow j)$	$r_j := r_0$	$(r_{r_j}:=r_0)$
Į.	LOAD	X		$r_0 := x$	$x \in \{j, \uparrow j, = j\}$
11	ADD	X		$r_0:=r_0+x$	$x \in \{j, \uparrow j, = j\}$
	SUB	X		$r_0:=r_0-x$	$x \in \{j, \uparrow j, = j\}$
	HALF			$r_0 := \lfloor \frac{r_0}{2} \rfloor$	
	100 1/3 17 70 JUL				

LVA 703608 (week 4) 38 GM LVA 703608 (week 4)

Verifiers

$$\begin{array}{c|c} \mathsf{JUMP} & j & \kappa := j \\ \mathsf{j} & \text{if } r_0 > 0, r_0 = 0, r_0 < 0 \\ \mathsf{then} & \kappa := j \\ \kappa := 0 \end{array}$$

Definition

 \rightarrow A configuration of Π is (κ, R) , where

$$R = \{(j_1, r_{j_1}), \dots, (j_k, r_{j_k})\}$$

denotes a set of register-value pairs, changed so far

- ightharpoonup \forall sets of finite sequences of integers D
 - \forall functions $\phi \colon \mathsf{D} \to \mathsf{int}$

 Π computes ϕ if for any $I \in D$

$$(1,\emptyset) \stackrel{(\Pi,I)^*}{\longrightarrow} (0,R)$$

where $(0, \phi(I)) \in R$

IVA 703608 (week 4)

Speed-up Theorem RAMs NTMs

Example: Multiple two binary numbers

- 1. READ 1 12. ADD 5
- 2. STORE 1 $(R_1 = i_1)$ 13. STORE 4 $(R_4 = i_1 \cdot (i_2 \mod 2^k))$
- 3. STORE 5 $(R_5 = i_1 2^k)$ 14. LOAD 5
- 4. READ 2 15. ADD 5
- 5. STORE 2 (*) (loop starts) 16. STORE 5
- 6. HALF 17. LOAD 3
- 7. STORE 3 $(R_3 = \lfloor \frac{i_2}{2^k} \rfloor)$ 18. JZERO 20 (if $R_3 = 0$ done)
- 8. ADD 3 19. JUMP 5 (else, repeat)
- 9. SUB 2 20. LOAD 4
- 0. JZERO 14 21. HALT
- 11. LOAD 4
 - (*) $R_2 = i_2$ if k = 0, $R_2 = \lfloor \frac{i_2}{2^{k-1}} \rfloor$ if k > 0

- ightharpoonup We write $\ell(i) = |(i)_2|$ for the binary length of i
- ightharpoonup We set $\ell(I) = \sum_{j=1}^n \ell(i_j)$ $I \in \mathsf{D}$
- **⇒** Suppose

$$(1,\emptyset) \stackrel{(\Pi,I)^t}{\longrightarrow} (0,R)$$
 and $t \leqslant f(\ell(I))$

 $\phi_{
m L}$

43

Then Π computes ϕ in time f(n)

Definition

- ightharpoonup $\Sigma = \{\sigma_1, \ldots, \sigma_k\}$ alphabet of a TM
- **▶** We set $D_{\Sigma} = \{(i_1, ..., i_n, 0) \mid n \geq 0, i_j \in [1, k]\}$
- $\forall \ \mathrm{L} \subseteq (\Sigma \{\sqcup, \triangleright\})^*$ Define $\phi_{\mathbf{L}} \colon \mathsf{D}_{\Sigma} \to \{0, 1\}$:

$$\phi_{\mathbf{L}}((i_1,\ldots,i_n,0))=1$$
 iff $\sigma_{i_1}\ldots\sigma_{i_n}\in\mathbf{L}$

i.e., computing $\phi_{\rm L}$ by a RAM is equivalent of deciding L

 GM
 LVA 703608 (week 4)
 41

 Speed-up Theorem
 RAMs
 NTMs
 Verifiers

TM and RAM

Theorem

Suppose $L \in \mathbf{TIME}(f(n))$, then there is a RAM program which computes ϕ_L in time $\mathcal{O}(f(n))$

Definition

- Let I be a sequence $\{i_1, \ldots, i_n\}$ of integers we write b(I) to denote the string $(i_1)_2, \ldots, (i_n)_2$
- → We say a TM M computes φ: D → int if for any sequence I ∈ D: M(b(I)) = b(φ(I))

Theorem

If a RAM program Π computes a function ϕ in time f(n), then there is a 7-string TM M which computes ϕ in time $\mathcal{O}(f(n)^3)$

LVA 703608 (week 4)

Nondeterministic Time

A nondeterministic Turing machine N is a quadruple (K, Σ, Δ, s) with

$$\Delta \colon K \times \Sigma \to \mathcal{P}((K \cup \{h, yes, no\}) \times \Sigma \times \{\leftarrow, \rightarrow, -\})$$

→ *N* decides L if for any $x \in \Sigma^*$:

$$x \in L$$
 iff $(s, \triangleright, x) \xrightarrow{N^*} (yes, w, u)$ for some w and u .

- \rightarrow N decides L in time f(n) if
 - $oldsymbol{1}$ $oldsymbol{N}$ decides L and
 - $\forall x \in \Sigma^*$:

$$(s, \triangleright, x) \stackrel{N^t}{\longrightarrow} (q, w, u)$$
 implies $t \leqslant f(|x|)$

We write $L \in \mathbf{NTIME}(f(n))$

Define a nondeterministic Turing machine (NTM) M that decides the language L of binary strings ending in the string 01:

RAMs

$p \in K$	$\sigma \in \Sigma$	$\delta(\pmb{p},\sigma)$
S	\triangleright	$\{(s,\triangleright, ightarrow)\}$
5		\emptyset
5	0	$\{(s,0, ightarrow),(q_1,0, ightarrow)\}$
S	1	$\{(s,1, ightarrow)\}$
q_1		Ø
q_1	0	Ø
q_1	1	$\{(q_2,1,\rightarrow)\}$
q_2		{ <i>yes</i> }
$=q_2$	_	Ø

GM LVA 703608 (week 4) 45

Speed-up Theorem

GM

DANA-

NTMs

Verifiers

iers Speed-up

d-up Theorem

Speed-up Theorem

RAMs

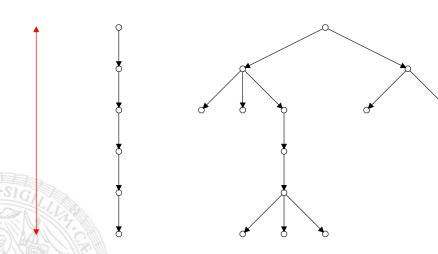
NTMs

/-....

Measuring Time

f(n) Deterministic

Nondeterministic



Nondeterministic Space

Definition

N decides L within space f(n) if

- f 1 N decides L and

$$(s, \triangleright, x, \dots, \triangleright, \epsilon) \xrightarrow{N^*} (q, w_1, u_1, \dots, w_k, u_k)$$
implies $\sum_{j=2}^{k-1} |w_j u_j| \leqslant f(|x|)$

We write $L \in \mathsf{NSPACE}(f(n))$

Example REACHABILITY \in **NSPACE**($\mathcal{O}(\log n)$)

- 1 use 2 strings beside the input
- 2 on the 2nd string write the currently checked node *i*
- 3 on the 3rd string we write a guess j
- 4 check whether (i, j) is in the graph; repeat

Speed-up Theorem RAMs NTMs Verifiers Speed-up Theorem RAMs NTMs

Complexity Classes (continued)

Definition

$$TIME(f(n))$$
 $SPACE(f(n))$ $NTIME(f(n))$ $NSPACE(f(n))$

We may replace f by a family of functions, parameterised by k

$$\mathsf{TIME}(n^k) = \bigcup_{i>0} \mathsf{TIME}(n^i) = \mathsf{P}$$
 $\mathsf{NTIME}(n^k) = \bigcup_{i>0} \mathsf{NTIME}(n^i) = \mathsf{NP}$

Other classes:

PSPACE = SPACE
$$(n^k)$$
 NPSPACE = NSPACE (n^k)
EXP = TIME (2^{n^k})
L = SPACE $(\log n)$ NL = NSPACE $(\log n)$

LVA 703608 (week 4)

Alternative Definition of NP

Definition

→ A verifier of a language L is an algorithm P such that:

 $L = \{ w \mid \text{there exists a string } c \text{ so that P accepts } \langle w, c \rangle \}$

 \rightarrow A polynomial verifier is one that runs in time polynomial in |w|

Theorem

NP is the class of all languages that have polynomial verifiers

Proof

A polynomial verifier P runs in polynomial time:

Hence it can have only polynomial bounded certificates c

Then

GM

- → Transform a NTM into a verifier, by reading the certificate as a choice sequence
- Transform a verifier into a NTM by guessing the certificate

LVA 703608 (week 4)

Determinism vs Nondeterminism

Example

TSP(D)

 $\mathsf{TSP}(D) \in \mathsf{NP}$ as $\mathsf{TSP}(D) \in \mathsf{NTIME}(n^2)$:

- Use 2 strings
- 2 Guess a tour on the first string
- 3 Check the tour on the second string.

Theorem

Suppose $L \in \mathbf{NTIME}(f(n))$

Then L is also decided by a 3-string deterministic TM M in time $\mathcal{O}(d^{f(n)})$

d>1 depends on the NTM $\it N$ deciding $\it L$, i.e.,

$$\mathsf{NTIME}(f(n)) \subseteq \bigcup_{d>1} \mathsf{TIME}(d^{f(n)})$$

LVA 703608 (week 4)