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Complexity Classes

model of computation multi-string TM

mode
deterministic
nondeterministic

resource
time
space

bound f : N → N

Definition Complexity class

A complexity class is the set of all languages, decided by a
multi-string TM, operating in a mode, so that the TM, on input x
uses at most f (|x |) of the resource.
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Time Constructible Functions

A function f : N → N, where f (n) ≥ n log n is called time
constructible if the function that maps

1n to the binary representation of f (n)

is computable in time O(f (n)).

Example Consider the following functions:

1 f (n) = n log n is time constructible

Proof Idea: First represent n in binary; second binary
multiplication of n and log n; the latter is (grossly) bounded
by O(n · log n) steps

2 f (n) = n
√

n is time constructible

3 f (n) = c, f (n) = n are not time constructible
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Space Constructible Functions

A function f : N → N, where f (n) ≥ log n is called space
constructible if the function that maps

1n to the binary representation of f (n)

is computable in space O(f (n)).

Example Consider the following functions:

1 f (n) = log n is space constructible

Proof Idea: First represent n in binary; then count the number
of bits in (n)2; needs at most O(log n)

2 f (n) = n2 is space constructible

3 f (n) = c, f (n) = log log n are not space constructible
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Complements of Complexity Classes

Definition coC
Let L ⊆ Σ∗ be a language
Define L = Σ∗ − L, its complement
For any class C, coC = {L : L ∈ C}

Facts

á deterministic space and time classes are closed under
complement

á nondeterministic space is closed under complement

á open problem whether nondeterministic time classes are
closed.
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Hierarchy Theorems

Theorem The time hierarchy theorem

If f (n) is a time constructible function, then the class TIME(f (n))
is strictly contained in TIME(f (2n + 1)3).

Corollary: P ( EXP

Theorem The space hierarchy theorem

If f (n) is a space constructible function, then the class
SPACE(f (n)) is strictly contained in SPACE(f (n) log f (n))

Corollary: L ( PSPACE
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Time Hierarchy Theorem

Let f (n) be a time-constructible function, define

Hf := {M; x : M accepts x after at most f (|x |) steps}

Lemma Hf ∈ TIME(f (n)3).

Proof sketch

á construct a suitable TM

Lemma Hf 6∈ TIME(f (bn
2c)).

Proof sketch

á use diagonalisation
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Proof of Hf ∈ TIME(f (n)3)

universal TM single-string simulator

speed-up TM

alarm clock Mf

the TM Uf that decides Hf

á a universal TM U interprets the first part of its input as the
code of another TM and the second as the code of the input;
we obtain

U(M; x) = M(x)

á states, symbols, special symbols, etc. are encoded as natural
numbers in binary

á δ is encoded as list of pairs

.
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Initial Phase

Uf has 4 strings.

á Uf uses Mf on the 4th string to compute binary
representation of f (|x |)

Then

á transform input x to the encoding of .x

á on the second string the code of the initial state s of M is
written

á on the third string the description of M is written

Complexity

á O(f (|x |)) +O(n) = O(f (n)), where n = |M; x |
(constants independent on M)
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Main simulation

Uf simulates one-by-one the steps of M on x

repeat

á Uf uses the single-string simulation to represent all strings of
M on its first string

á the second string is used to keep track of the current state of
M

á gather all information from the first string, update state
according to third string, rewrite first string

á Uf advances the alarm-clock, then repeats.

The simulation halts if M halts or the alarm goes off

Complexity

á each step needs O(f (n)2) (constants independent on M)

á total time is O(f (n)3) use speed-up machine to obtain f (n)3
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Reminder: Diagonalisation
H := {M; x : M halts on x}

D

. . . 100 101 110 . . .
...

...
...

...
...

...
100 . . . � � × . . . × : halting
101 . . . � � � . . . �: looping
110 . . . � × × . . .
...

...
...

...
...

...

Definition MH

suppose MH decides H:

M (M;M)
yes

no

loop

yes
MH

D
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Proof of Hf 6∈ TIME(f (bn
2c))

suppose N decides Hf in time f (bn
2c). Define

Df (M): if N(M;M) = yes then no, else yes

M (M;M)
yes

no

no

yes
N

Df

Hence, as Df runs in time f (n):

Df (Df ) = yes ⇒ N(Df ;Df ) = no ⇒ Df ;Df 6∈ Hf ⇒ Df (Df ) = no

Df (Df ) = no ⇒ N(Df ;Df ) = yes ⇒ Df ;Df ∈ Hf ⇒ Df (Df ) = yes

Contradiction
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