

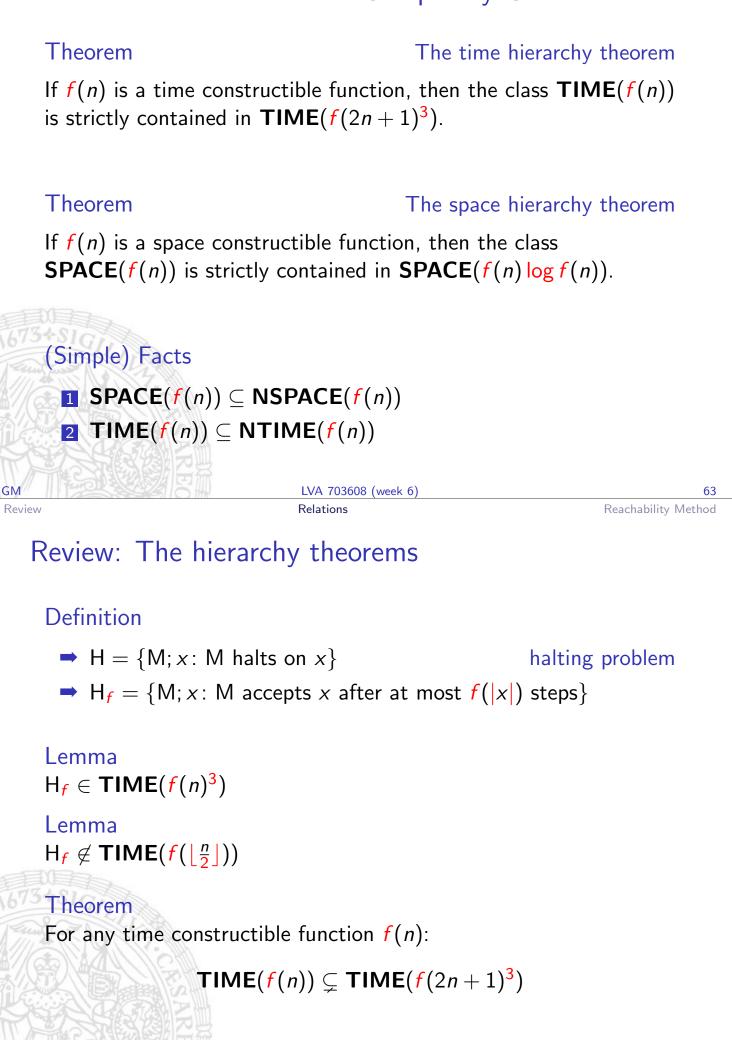
Papadimitriou defines proper complexity functions, cf. Def. 7.1; these we ignore

GM

GM

64

Review: Relations between Complexity Classes



LVA 703608 (week 6)

Gap theorem

Theorem

```
There is a computable function f : \mathbb{N} \to \mathbb{N} such that 
TIME(f(n)) = TIME(2^{f(n)})
```

Proof Idea

- → define a function f such that no TM, computing on input on length n, halts after more than f(n) but less than $2^{f(n)}$ steps
- ➡ observe *f* is recursive, not time constructible
- ➡ assume some enumeration of all TMs
- \rightarrow let $T_i(x)$ denote the running time of TM M_i on input x

Define f(n) = the least *m* such that for all $i \leq n$

if $T_i(x) \leq 2^m$, for some input x with |x| = n, then also $T_i(x) \leq m$

LVA 703608 (week 6)

Review

GM

Relations between Complexity Classes

Theorem

```
NTIME(.) \rightarrow SPACE(.)
```

Let f(n) be a time and space constructible function; then **NTIME** $(f(n)) \subseteq$ **SPACE**(f(n)).

Relations

Proof Idea

 \rightarrow simulation of the computation tree needs at most f(n) space

Theorem

 $NSPACE(.) \rightarrow TIME(.)$

Suppose f(n) is space constructible; then

 $\mathsf{NSPACE}(\mathbf{f}(n)) \subseteq \mathsf{TIME}(k^{\log n + \mathbf{f}(n)}) \ (= \bigcup_{d>0} \mathsf{TIME}(d^{\log n + \mathbf{f}(n)}))$

Proof Idea

GM

use reachability method

66

65

Reachability Method

Review: Configurations

Consider the following TM M

$p \in K$	$\sigma\in \Sigma$	$\delta(\pmb{p},\sigma)$
S	0	$(s, 0, \rightarrow)$
S	1	(s,1, ightarrow)
S		(q,\sqcup,\leftarrow)
S	\triangleright	$(s, \triangleright, ightarrow)$
q	0	(h, 1, -)
q	1	$(q,0,\leftarrow)$
q	\triangleright	$(h, \triangleright, ightarrow)$

Then $(s, \triangleright 1, 1011)$ is a configuration and we have for example

$(s, \triangleright 11, 1) \xrightarrow{\mathsf{M}^3} (q, \triangleright 111, \sqcup)$

LVA 703608 (week 6)

Review

GM

GM

Reachability Method

Proposition

Consider a TM (deterministic or nondeterministic) deciding a language L so that the number of possible configurations is $\leq f(n)$.

Relations

Assume further, we can decide in time g(n) that one configuration yields another.

Then $L \in \mathsf{TIME}(\mathcal{O}(f(n)^2 \cdot g(n))).$

Definition

configuration graph

Let M be a TM; the configuration graph on input x, written G(M, x) is defined as follows:

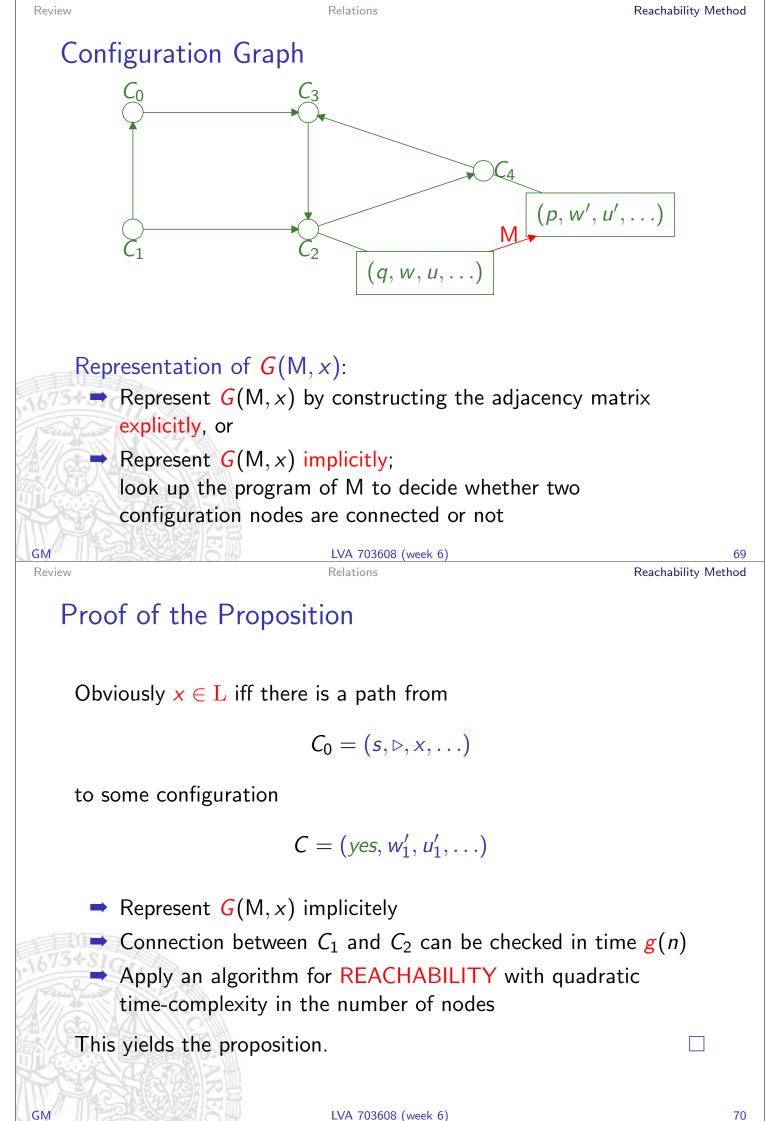
1 the sets of **nodes** is the set of all possible configurations

2 let C_1, C_2 be two configurations

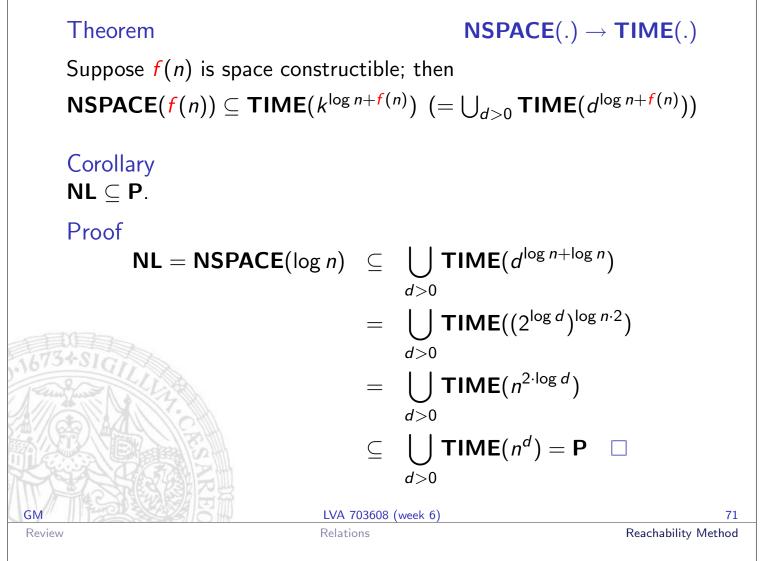
 \exists edge between C_1 and C_2 in G(M, x) iff $C_1 \xrightarrow{M} C_2$

67

Reachability Method



GM



Proof of the Theorem

Assume $L \in NSPACE(f(n))$. Then there exists a NTM N with input and output deciding $x \in L$ in space f(n), n = |x|.

Representation of configurations

Int N = (K, Σ, Δ, s) be a k-string TM; the configuration is defined as

$$(q, w_1, u_1, \ldots, w_k, u_k)$$

a configuration of a TM with input and output that decides L can be represented as:

$$(q, i, w_2, u_2, \ldots, w_{k-1}, u_{k-1})$$

pointer (i) to the position of cursor on input tape is kept
 output tape are dropped

Estimation

As N uses at most f(n) space, the number of possible configurations is bounded by

 $|\mathcal{K}| \cdot (n+1) \cdot |\Sigma|^{2(k-2)f(n)}$

Total number of configurations is at most $nc_1^{f(n)} =: c_2^{\log n + f(n)}$

Reachability method:

- → Whether configuration C_1 yields C_2 takes $\mathcal{O}(f(n))$ steps
- → We have at most $c_2^{\log n + f(n)}$ many configurations
- → We can decide L by a deterministic TM in time at most $(c_2^{\log n+f(n)})^2 \cdot c_3 \cdot f(n) =: c^{\log n+f(n)}$

Remark

The configuration graph G(N, x) can be implicitly represented:
Use *i* to find the symbol scanned on the input tape of N

Relations

LVA 703608 (week 6)

Review

GM

GM

Summary

Corollary

$\mathsf{L} \subseteq \mathsf{N}\mathsf{L} \subseteq \mathsf{P} \subseteq \mathsf{N}\mathsf{P} \subseteq \mathsf{P}\mathsf{S}\mathsf{P}\mathsf{A}\mathsf{C}\mathsf{E} \subseteq \mathsf{E}\mathsf{X}\mathsf{P}$

Proof Idea

- \rightarrow L \subseteq NL
- \rightarrow NL \subset P
- \rightarrow **P** \subset **NP**
- \blacksquare NP \subseteq PSPACE
- **PSPACE** \subseteq **EXP**

 $\begin{aligned} & \mathsf{SPACE}(f(n)) \subseteq \mathsf{NSPACE}(f(n)) \\ & \mathsf{NSPACE}(f(n)) \subseteq \mathsf{TIME}(k^{\log n + f(n)}) \\ & \mathsf{TIME}(f(n)) \subseteq \mathsf{NTIME}(f(n)) \\ & \mathsf{NTIME}(f(n)) \subseteq \mathsf{SPACE}(f(n)) \\ & \mathsf{SPACE}(f(n)) \subseteq \mathsf{TIME}(k^{\log n + f(n)}) \end{aligned}$

Observation

space hierarchy theorem

$L \subsetneq PSPACE$

All inclusions are conjectured to be strict

73

Reachability Method